Vol. 32
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-21
Comparative Study of Fabry-Perot Resonator Antenna with PMC and PEC Ground Plane
By
Progress In Electromagnetics Research B, Vol. 32, 299-317, 2011
Abstract
In this paper, the transverse equivalent network (TEN) model based on the transmission line theory is employed to analyze and calculate the far-field radiation properties of the Fabry-Perot Resonator (FPR) antenna with perfect magnetic conductor (PMC) ground plane in detail, then the comparative study of the radiation property of FPR antenna with PMC and PEC ground plane is presented. The closed-form expressions for the radiated fields, field peak values, pattern beamwidths and pattern bandwidth of this type of antenna in the E- and H-planes are derived, respectively. The results demonstrate that in theory the radiation property of FPR antenna with two kinds of ground plane is not the same unexpectedly. An interesting characteristic of this type of antenna is that when the PMC acts as the antenna ground plane, the beamwidth and bandwidth of the antenna is increased by a factor of two in general cases, while its peak value of far field is the same as that of the conventional antennas of this class having PEC ground plane. Some results are validated through full-wave simulations of an actual antenna. The original results obtained here lead to a design method for getting the maximum directivity and keeping the bandwidth of this kind of resonant antenna, which is of great significance for antenna designing.
Citation
Zhen-Guo Liu, and Ting-Hua Liu, "Comparative Study of Fabry-Perot Resonator Antenna with PMC and PEC Ground Plane," Progress In Electromagnetics Research B, Vol. 32, 299-317, 2011.
doi:10.2528/PIERB11042303
References

1. Trentini, G. V., "Partially reflecting sheet array," IRE Trans. Antennas Propag., Vol. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455

2. Guerin, N., S. Enoch, G. Tayeb, et al. "A metallic Fabry-Perot directive antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 220-224, 2006.
doi:10.1109/TAP.2005.861578

3. Feresids, A. P., G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surface and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-214, 2005.
doi:10.1109/TAP.2004.840528

4. Liu, Z. G., W. X. Zhang, D. L. Fu, et al. "Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size," Microwave & Opt. Tech. Letters, Vol. 50, No. 6, 1623-1627, 2008.
doi:10.1002/mop.23456

5. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 807-816, 1984.
doi:10.1109/TAP.1984.1143433

6. Yang, H. Y. and N. G. Alexopoulos, "Gain enhancement methods or printed circuit antennas through multiple superstrates," IEEE Trans. Antennas Propag., Vol. 35, No. 7, 860-863, 1987.
doi:10.1109/TAP.1987.1144186

7. Jackson, D. R. and A. Oliner, "A leaky-wave analysis of the high-gain printed antenna configuration," IEEE Trans. Antennas Propag., Vol. 36, No. 7, 905-910, 1988.
doi:10.1109/8.7194

8. Jackson, D. R., A. Oliner, and A. Ip, "Leaky wave propagation and radiation for a narrow-beam multiplelayer dielectric structure," IEEE Trans. Antennas Propag., Vol. 41, No. 3, 344-348, 1993.
doi:10.1109/8.233128

9. Zhao, T., D. R. Jackson, J. T. Williams, and A. A. Oliner, "General formulas for 2D leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3525-3533, 2005.
doi:10.1109/TAP.2005.856315

10. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.

11. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic-bandgap antennas," IEEE Trans. Antennas Propag., Vol. 47, No. 11, 2115-2122, 1999.

12. Cheype, C., C. Serier, M. Thèvenot, et al. "An electromagnetic bandgap resonator antenna," IEEE Trans. Antennas Propag., Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

13. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Design of a high-directivity electromagnetic band gap resonator antenna using a frequency-selective surface superstrate," Microwave & Opt. Tech. Lett., Vol. 43, No. 6, 462-467, 2004.
doi:10.1002/mop.20502

14. Weily, A. R., L. Horvath, K. P. Esselle, et al. "A planar resonator antenna based on a woodpile EBG material," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 216-223, 2005.
doi:10.1109/TAP.2004.840531

15. Pirhadi, A. and M. Hakkak, "Design of compact dual band high directive electromagnetic bandgap (EBG) resonator antenna using artificial magnetic conductor," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1682-1690, 2007.
doi:10.1109/TAP.2007.898598

16. Ge, Y. and K. P. Esselle, "A method to design dual-band, high-directivity EBG resonator antennas using single-resonant, single-layer partially reflective surfaces," Progress In Electromagnetics Research C, Vol. 13, 245-257, 2010.
doi:10.2528/PIERC10020901

17. Boutayeb, H., K. Mahdjoubi, A. C. Tarot, et al. "Directivity of an antenna embedded inside a Fabry-Perot cavity analysis and design," Microwave & Opt. Tech. Lett., Vol. 48, No. 1, 12-17, 2006.
doi:10.1002/mop.21249

18. Boutayeb, H., T. A. Denidni, and M. Nedil, "Bandwidth widening techniques for directive antennas based on partially reflecting surfaces," Progress In Electromagnetics Research, Vol. 74, 407-419, 2007.
doi:10.2528/PIER07060905

19. Liu, Z. G., "Fabry-Perot resonator antenna," Journal of Infrared Milli Terahz Waves, Vol. 31, No. 4, 391-403, 2010.

20. Liu, Z. G. and R. Qiang, "A novel broadband Fabry-Perot resonator antenna with gradient index metamaterial superstrate," IEEE International Symposium on Antennas and Propag., Toronto, Canada, Jul. 11--17, 2010.

21. Liu, Z. G., "Research progress on Fabry-Perot resonator antenna," Journal of Zhejiang University SCIENCE A, Vol. 10, No. 4, 583-588, 2009.
doi:10.1631/jzus.A0820546

22. Sievenpiper, D., High-impedance electromagnetic surfaces, Ph.D. Dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, 1999.

23. Sievenpiper, D., L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, "High-impedance frequency selective surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

24. Yang, F., K. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

25. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

26. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

27. Foroozesh, A., M. N. M. Kehn, and L. Shafai, "Application of artificial ground planes in dual-band orthogonally-polarized low-profile high-gain planar antenna design," Progress In Electromagnetics Research, Vol. 84, 407-436, 2008.
doi:10.2528/PIER08062804

28. Liu, Z. G. and R. Qiang, "Comparative approach of Fabry-Perot resonator antenna with PMC and PEC ground plane," IEEE International Symposium on Antennas and Propag., Toronto, Canada, Jul. 11--17, 2010.

29. Burghignoli, P., G. Lovat, F. Capolino, and D. R. Jackson, "Highly polarized directive radiation from a Fabry-Perot cavity leaky-wave antenna based on a metal strip grating," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3873-3883, 2010.
doi:10.1109/TAP.2010.2078441

30. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proc. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, 2001.
doi:10.1049/ip-map:20010828

31. Kaganovsky, Y. and R. Shavit, "Analysis of radiation from a line source in a grounded dielectric slab covered by a metal strip grating," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 135-143, 2009.
doi:10.1109/TAP.2008.2009667

32. Yousefi, L., H. Attia, and O. M. Ramahi, "Broadband experimental characterization of artificial magnetic materials based on a microstrip line method," Progress In Electromagnetics Research, Vol. 90, 1-13, 2009.
doi:10.2528/PIER08121904