Department of Electrical and Computer Engineering
University of Colorado at Boulder
USA
HomepageDepartment of Electrical, Computer and Energy Engineering
University of Colorado
USA
HomepageDepartment of Electrical, Computer and Energy Engineering
University of Colorado
USA
HomepagePhysical Measurement Lab
National Institute of Standards and Technology (NIST)
USA
HomepageDepartment of Electrical, Computer and Energy Engineering
University of Colorado
USA
Homepage1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
2. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magneto-dielectric spherical particles embedded in a matrix," IEEE Trans. Ant. Prop., Vol. 51, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563
3. Vendik, O. G. and M. S. Gashinova, "Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix ," Proceedings 34th European Microwave Conference, 1209-1212, Amsterdam, October 12-14, 2004.
4. Vendik, I. B., O. G. Vendik, and M. S. Gashinova, "Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability," Pisma Zhurn. Tekh. Fiz., Vol. 32, No. 10, 30-39, 2006 (in Russian); Tech. Phys. Lett., , Vol. 32, 429-432, (in English).
5. Jylhä, L., I. Kolmakov, S. Maslovski, and S. Tretyakov, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, art. 043102, 2006.
6. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-Electron. Rev., Vol. 14, 179-186, 2006.
doi:10.2478/s11772-006-0023-z
7. Yannopapas, V., "Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres," Phys. Rev. B, Vol. 75, art. 035112, 2007.
8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, art. 035112, 2007.
8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, art. 045104, 2008.
9. Vendik, I. B., M. A. Odit, and D. S. Kozlov, "3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions," Metamaterials , Vol. 3, 140-147, 2009.
doi:10.1016/j.metmat.2009.09.001
10. Ghadarghadr, S. and H. Mosallaei, "Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres," IEEE Trans. Ant. Prop., Vol. 57, 149-160, 2009.
doi:10.1109/TAP.2008.2009725
11. Vendik, I., M. Odit, and D. Kozlov, "3D metamaterial based on a regular array of resonant dielectric inclusions," Radioengineering, Vol. 18, 111-116, 2009.
12. Shore, R. and A. D. Yaghjian, "Traveling waves on three-dimensional periodic arrays of two different alternating magnetodielectric spheres," IEEE Trans. Ant. Prop., Vol. 57, 3077-3091, 2009.
doi:10.1109/TAP.2009.2024495
13. Vendik, I. B., O. G. Vendik, and M. A. Odit, "An isotropic metamaterial formed with ferroelectric ceramic spherical inclusions," Fiz. Tverd. Tela, Vol. 51, 1499-1503, (in Russian); Phys. Solid State, Vol. 51, 1590{1594, 2009 (in English).
14. Yannopapas, V. and A. Moroz, "Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges," J. Phys. Cond. Mat., Vol. 17, 3717-3734, 2005.
doi:10.1088/0953-8984/17/25/002
15. Seo, B.-J., T. Ueda, T. Itoh, and H. Fetterman, "Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium," Appl. Phys. Lett., Vol. 88, art. 161122, 2006.
16. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies," Phys. Rev. B, Vol. 73, art. 045105, 2006.
17. Yannopapas, V., "Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices," Phys. Stat. Sol. (RRL), Vol. 1, 208-210, 2007.
doi:10.1002/pssr.200701191
18. Khoo, I. C., A. Diaz, D.-H. Kwon, and D. H. Werner, "Liquid crystalline nonlinear optical metamaterials with low-loss tunable negative-zero-positive refractive indices," Proc. SPIE, 6587, art. 658702, 2007.
19. Alù, A. and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers," J. Appl. Phys., Vol. 97, art. 094310, 2005.
20. Mie, G., "Beiträge sur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Physik, 4th Folge, Bd. 25, 377-445, 1908; Library Translation 1873 , Royal Aircraft Establishment, London, UK, 1976 (in English); Report SAND78-6018, Sandia Laboratories, Albuquerque, NM, 1978.
21. Kerker, M., Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.
22. Keller, O., "Optical works of L. V. Lorenz," Progress in Optics, Vol. 43, E. Wolf, ed., Vol. 43, 195-294, Elsevier, Amsterdam, 2002.
23. Gans, R. and H. Happel, "Zur Optik kolloidaler Metallösungen," Ann. Physik, 4th Folge, Bd. 29, 277-300, 1909.
24. Stratton, J. A., "The effect of rain and fog on the propagation of very short radio waves," Proc. IRE, Vol. 18, 1064-1074, 1930.
doi:10.1109/JRPROC.1930.222101
25. Kreibig, U. and M. Vollmer, "Optical Properties of Metal Clusters," 144, Springer-Verlag, Berlin, 1995.
26. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
27. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions," Chapter 10, U. S. Government Printing Office, Washington DC, 1964.
28. Lewin, L., "The electrical constants of a material loaded with spherical particles ," J. IEE (London), Part III, Vol. 94, 65-68, 1947.
29. Khizhnyak, N. A., "Artificial anisotropic dielectrics: I, II and III," Zh. Tekh. Fiz., Vol. 27, 2006-2013, 2014-2026 and 2027-2037, 1957 (in Russian); Sov. Phys. Tech. Phys., Vol. 2, 1858-1864, 1865-1876 and 1877-1886, 1957 (in English).
30. Aden, A. L. and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys., Vol. 22, 1242-1246, 1951.
doi:10.1063/1.1699834
31. Güttler, A., "Die Miesche Theorie der Beugung durch dielektrische Kugeln mit absorbierendem Kern und ihre Bedeutung für Probleme der interstellaren Materie und des atmosphärischen Aerosols," Ann. Physik, 6th Folge, Bd. 11, 65-98, 1952.
32. Shifrin, K. S., "Scattering of light from two-layer particles," Izv. Akad. Nauk SSSR Ser. Geofiz., Vol. 2, 15-21, 1952 (in Russian).
33. Fenn, R. W. and H. Oser, "Scattering properties of concentric soot-water spheres for visible and infrared light," Appl. Opt., Vol. 4, 1504-1509, 1965.
doi:10.1364/AO.4.001504
34. Krekov, G. M. and R. F. Rakhimov, "Calculation of radiation characteristics of polydisperse concentric spheres," Izv. VUZ Fiz., Vol. 6, 30-35, 1973 (in Russian); Sov. Phys. J., Vol. 16, 762-766, 1973 (in English).
35. Galst'yan, E. A. and A. A. Ravaev, "Electrodynamic parameters of a medium containing two-layer spherical inclusions," Izv. VUZ Radiofiz., Vol. 30, 1243-1248, 1987 (in Russian); Radiophys. Quant. Electron., Vol. 30, 918-922, 1987 (in English).
36. Ponomarenko, V. I., V. N. Berzhanskii, S. I. Zhuravlev, and E. D. Pershina, "Permittivity and permeability of a synthetic dielectric with metal-plated ferrite particles at microwave frequencies," Radiotekh. Elektron., Vol. 35, 2208-2211, 1990 (in Russian); Sov. J. Commun. Technol. Electron., Vol. 36, No. 3 133-136, 1991 (in English).
37. Ponomarenko, V. I. and D. I. Mirovitskii, "An artificial dielectric with metallized magnetodielectric inserts," Radiotekhnika, Vol. 46, No. 6, 76{78, 1991 (in Russian); Telecommun. Radio Eng., Vol. 46, No. 5, 104-107, 1991 (in English).
38. Timoshenko, A. M. and V. I. Ponomarenko, "A generalized formula for the electromagnetic constants of a medium with spherical inclusions," Radiotekh. Elektron., Vol. 41, 412-415, 1996 (in Russian); J. Commun. Technol. Electron., Vol. 41, 379-382, 1996 (in English).
39. Scher, A. D. and E. F. Kuester, "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials, Vol. 3, 44-55, 2009.
doi:10.1016/j.metmat.2009.02.001
40. Trans-Tech Incorporated, http://www.trans-techinc.com.
41. Morgan Electro Ceramics Ltd., http://www.morganelectroceramics.com.
42. TCI Ceramics, http://www.magneticsgroup.com.
43. Temex Ceramics, http://www.temex-ceramics.com.
44. Pacific Ceramics, http://www.pceramics.com.
45. Schussler, M., A. Fleckenstein, J. Freese, and R. Jakoby, "Left-handed metamaterials based on split ring resonators for microstrip applications ," 33rd European Microwave Conference, 1119-1122, 2003.
46. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negativeindex metamaterials with improved performance at optical frequencies ," J. Opt. Soc. Amer. B, Vol. 23, 434-438, 2006.
doi:10.1364/JOSAB.23.000434
47. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express, Vol. 14, 6778-6787, 2006.
doi:10.1364/OE.14.006778
48. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett., Vol. 31, 1800-1802, 2006.
doi:10.1364/OL.31.001800
49. Gokkavas, M., K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B, Vol. 73, art. 193103, 2006.
50. He, Y., P. He, V. G. Harris, and C. Vittoria, "Role of ferrites in negative index metamaterials," IEEE Trans. Magnetics, Vol. 42, 2852-2854, 2006.
doi:10.1109/TMAG.2006.879146
51. He, Y., P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Mag. Mag. Mater., Vol. 313, 187-191, 2007.
doi:10.1016/j.jmmm.2006.12.031
52. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials," Opt. Express, Vol. 15, 11536-11541, 2007.
doi:10.1364/OE.15.011536
53. Koschny, T., J. Zhoua, and C. M. Soukoulis, "Magnetic response and negative refractive index of metamaterials," Proc. SPIE, Vol. 6581, art. 658103, 2007.
54. Guven, K., A. O. Cakmak, M. D. Caliskan, T. F. Gundogdu, M. Kafesaki, C. M. Soukoulis, and E Ozbay, "Bilayer metamaterial: Analysis of left-handed transmission and retrieval of effective medium parameters," J. Opt. A, Vol. 9, S361-S365, 2007.
doi:10.1088/1464-4258/9/9/S13
55. Kildishev, A. V., U. K. Chettiar, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, "Stochastic optimization of lowloss optical negative-index metamaterial," J. Opt. Soc. Amer. B, Vol. 24, A34-A39, 2007.
doi:10.1364/JOSAB.24.000A34
56. Erentok, A., A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, "Low frequency lumped element-based negative index metamaterial," Appl. Phys. Lett., Vol. 91, art. 184104, 2007.
57. Paul, O., C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, Vol. 16, 6736-6744, 2008.
doi:10.1364/OE.16.006736
58. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247
59. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, 3478-3480, 2009.
doi:10.1364/OL.34.003478
60. Weis, P., O. Paul, C. Imhof, R. Beigang, and M. Rahm, "Strongly birefringent metamaterials as negative index terahertz wave plates," Appl. Phys. Lett., Vol. 95, art. 171104, 2009.
61. Lepetit, T., E. Akmansoya, and J.-P. Ganneb, "All-dielectric metamaterial: A ferroelectric-based scheme in the microwave range ," Proc. SPIE, Vol. 7392, art. 73920H, 2009.
62. Andryieuski, A., C. Menzel, C. Rockstuhl, R. Malureanu, and A. V. Lavrinenko, "The split cube in a cage: Bulk negative-index material for infrared applications," J. Opt. A, Vol. 11, art. 114010, 2009.
63. Ding, P., E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, "Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure," Photon. Nanostruct. Fund. Appl., Vol. 7, 92-100, 2009.
doi:10.1016/j.photonics.2008.12.005
64. Kanté, B., A. de Lustrac, and J.-M. Loutioz, "Low loss negative index metamaterials with one type of meta-atom," Photon. Nanostruct. Fund. Appl., Vol. 8, 112-119, 2010.
doi:10.1016/j.photonics.2009.08.001
65. Alici, K. B. and E. Ozbay, "Theoretical study and experimental realization of a low-loss metamaterial operating at the millimeter-wave regime: Demonstrations of flat- and prism-shaped samples," IEEE J. Selected Topics Quant. Electron., Vol. 16, 386-393, 2010.
doi:10.1109/JSTQE.2009.2032668
66. Burgos, S. P., R. de Waele, A. Polman, and H. A. Atwater, "A single-layer wide-angle negative-index metamaterial at visible frequencies," Nature Materials, Vol. 9, 407-412, 2010.
doi:10.1038/nmat2747
67. Tang, J. and S. He, "A novel structure for double negative NIMs towards UV spectrum with high FOM," Opt. Express, Vol. 18, 25256-25263, 2010.
doi:10.1364/OE.18.025256
68. Gong, B. and X. Zhao, "Numerical demonstration of a three-dimensional negative-index metamaterial at optical frequencies," Opt. Express, Vol. 19, 289-296, 2011.
doi:10.1364/OE.19.000289
69. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, art. 067402, 2011.
70. Goodwin, E. T., "Recurrence relations for cross products of Bessel functions," Quart. J. Mech. Appl. Math., Vol. 2, 72-74, 1949.