Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-06-24
Plasmonic Effect of Gold Nanospheroid on Spontaneous Emission
By
Progress In Electromagnetics Research B, Vol. 31, 283-296, 2011
Abstract
The plasmonic effects of a gold prolate nanospheroid on the spontaneous emission of an adjacent emitter, regarded as an oscillating electric dipole, at the excitation and emission stages are studied respectively by using the multiple multipole method. The numerical results show that when an irradiating light is at the longitudinal surface plasmon resonance frequency of the nanospheroid and with a polarization parallel to the long axis, the strongest excitation rate occurs at the proximity of the long-axis vertex. In addition, if the emitter is at this region, and its orientation is also parallel to the long axis, the apparent quantum yield of the emission is the maximum, compared to the other locations and orientations. Therefore, for this case the overall enhancement factor of a nanospheroid on an emitter's spontaneous emission is the maximum. In contrast, the emitter's emission could be quenched, if it is near the short-axis vertex.
Citation
Jiunn-Woei Liaw, Chi-San Chen, and Jeng-Hong Chen, "Plasmonic Effect of Gold Nanospheroid on Spontaneous Emission," Progress In Electromagnetics Research B, Vol. 31, 283-296, 2011.
doi:10.2528/PIERB11041405
References

1. Anger, P., P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett., Vol. 96, 113002, 2006.
doi:10.1103/PhysRevLett.96.113002

2. Kuhn, S., U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle," Phys. Rev. Lett., Vol. 97, 017402, 2006.
doi:10.1103/PhysRevLett.97.017402

3. Colas des Francs, G., A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, "Fluorescence relaxation in the near-field of a mesoscopic metallic particle: Distance dependence and role of plasmon modes," Opt. Express, Vol. 16, 17654, 2008.
doi:10.1364/OE.16.017654

4. Ming, T., L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, "Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods," Nano Lett., Vol. 9, No. 11, 3896-3903, 2009.
doi:10.1021/nl902095q

5. Fu, Y., J. Zhang, and J. R. Lakowicz, "Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle," J. Fluoresc., Vol. 17, 811-816, 2007.
doi:10.1007/s10895-007-0259-0

6. Gerber, S., F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner , "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B, Vol. 75, 073404, 2007.
doi:10.1103/PhysRevB.75.073404

7. Bharadwaj, P. and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express, Vol. 15, 14266-14274, 2007.
doi:10.1364/OE.15.014266

8. Aslan, K., M. Wu, J. R. Lakowicz, and C. D. Geddes, "Metal enhanced fluorescence solution-based sensing platform 2: Fluorescent core-shell Ag@SiO2 nanoballs," J. Fluoresc., Vol. 17, 127-131, 2007.
doi:10.1007/s10895-007-0164-6

9. Tovmachenko, O. G., C. Graf, D. J. Van Den Heuvel, A. Van Blaaderen, and H. C. Gerritsen, "Fluorescence enhancement by metal-core/silica-shell nanoparticles," Adv. Mater., Vol. 18, 91-95, 2006.
doi:10.1002/adma.200500451

10. Liaw, J. W., C. L. Liu, W. M. Tu, C. S. Sun, and M. K. Kuo, "Average enhancement factor of molecules-doped coreshell (Ag@SiO2) on fluorescence," Opt. Express, Vol. 18, No. 12, 12788-12797, 2010.
doi:10.1364/OE.18.012788

11. Tam, F., G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of molecular fluorescence," Nano Lett., Vol. 7, 496-501, 2007.
doi:10.1021/nl062901x

12. Ringler, M., A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, "Shaping emission spectra of °uorescent molecules with single plasmonic nanoresonators," Phys. Rev. Lett., Vol. 100, 203002, 2008.
doi:10.1103/PhysRevLett.100.203002

13. Chowdhury, M. H., S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, "Computational study of fluorescence scattering by silver nanoparticles," J. Opt. Soc. Am. B, Vol. 24, 2259-2267, 2007.
doi:10.1364/JOSAB.24.002259

14. Farahani, J. N., D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning antenna: A tunable superemitter," Phys. Rev. Lett., Vol. 95, 017402, 2005.
doi:10.1103/PhysRevLett.95.017402

15. Mertens, H., J. S. Biteen, H. A. Atwater, and A. Polman, "Polarization-selective plasmon-enhanced silicon quantum-dot luminescence," Nano Lett., Vol. 6, 2622-2625, 2006.
doi:10.1021/nl061494m

16. Dulkeith, E., A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. Van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects," Phys. Rev. Lett., Vol. 89, 203002, 2002.
doi:10.1103/PhysRevLett.89.203002

17. Eustis, S. and M. A. El-Sayed, "Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum ," J. Appl. Phys., Vol. 100, 044324, 2006.
doi:10.1063/1.2244520

18. Ni, W., X. Kou, Z. Yang, and J. Wang, "Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods," ACS Nano, Vol. 2, 677-686, 2008.
doi:10.1021/nn7003603

19. Chang, W.-S., J. W. Ha, L. S. Slaughter, and S. Link, "Plasmonic nanorod absorbers as orientation sensors," Proc. Natl. Acad. Sci. USA, Vol. 107, 2781-2786, 2010.
doi:10.1073/pnas.0910127107

20. Kou, X., W. Ni, C.-K. Tsung, K. Chan, H.-Q. Lin, G. D. Stucky, and J. Wang, "Growth of gold bipyramids with improved yield and their curvature-directed oxidation," Small, Vol. 3, No. 12, 2103-2113, 2007.
doi:10.1002/smll.200700379

21. Klimov, V. V., M. Ducloy, and V. S. Letokhov, "Spontaneous emission of an atom placed near a prolate nanospheroid," Eur. Phys. J. D, Vol. 20, 133-148, 2002.
doi:10.1140/epjd/e2002-00107-2

22. Mohammadi, A., V. Sandoghdar, and M. Agio, "Gold nanorods and nanospheroids for enhancing spontaneous emission," New J. Phys., Vol. 10, 105015, 2008.
doi:10.1088/1367-2630/10/10/105015

23. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonance of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865

24. Hartling, T., P. Reichenbach, and L. M. Eng, "Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle," Opt. Express, Vol. 5, 12806-12817, 2007.
doi:10.1364/OE.15.012806

25. Liaw, J. W., J. H. Chen, C. S. Chen, and M. K. Kuo, "Purcell effect of nanoshell dimer on single molecule's fluorescence," Opt. Express, Vol. 17, No. 16, 13532-13540, 2009.
doi:10.1364/OE.17.013532

26. Liaw, J. W., C. S. Chen, and J. H. Chen, "Enhancement or quenching effect of metallic nanodimer on spontaneous emission," J. Quant. Spectrosc. Radiat. Transfer, Vol. 111, 454-465, 2010.
doi:10.1016/j.jqsrt.2009.09.009

27. Hafner, C., The Generalized Multipole Technique for Computational Electromagnetics, Artech. House, Boston, 1991.

28. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

29. Lakowicz, J. R., "Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission," Anal. Biochem., Vol. 337, 171-194, 2005.
doi:10.1016/j.ab.2004.11.026