Vol. 32
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-11
Tropical Rain Classification and Estimation of Rain from Z-R (Reflectivity-Rain Rate) Relationships
By
Progress In Electromagnetics Research B, Vol. 32, 107-127, 2011
Abstract
A Z-R relation is derived using a data set which consists of nine rain events selected from Singapore's drop size distribution. Rain events are separated into convective and stratiform types of rain using two methods: the Gamache-Houze method, a simple threshold technique, and the Atlas-Ulbrich method. In the Atlas-Ulbrich method, the variability of the rain integral parameters R, Z, Nw, D0 and gamma model parameter $\mu $ are used for the classification of rain into convective, stratiform and transition. Z-R relations are derived for each type of rain after classification. The changes in the coefficients of the Z-R relations for different rain events are plotted and analyzed. The Z-R relations of the different methods using the Singapore data are compared and analyzed. It is concluded that the coefficient A of the Z-R relation is higher for the convective stage followed by the stratiform and transition stages. The coefficient b values are higher for the transition stage followed by the stratiform and convective stages. Reflectivities are extracted from RADAR data above NTU site for rain events and compared with the reflectivities derived from the distrometer data. Rain rates retrieved from RADAR data using the proposed relations from Singapore's data set are compared with the distrometer rain rates. The RADAR extracted rain rates are found to be constantly lower than the distrometer derived rain rates but matches well.
Citation
Lakshmi Sutha Kumar, Yee Hui Lee, Jun Xiang Yeo, and Jin Teong Ong, "Tropical Rain Classification and Estimation of Rain from Z-R (Reflectivity-Rain Rate) Relationships," Progress In Electromagnetics Research B, Vol. 32, 107-127, 2011.
doi:10.2528/PIERB11040402
References

1. Marshall, J. S. and W. M. Palmer, "The distribution of raindrops with size," Journal of Atmos. Sci., Vol. 5, 165-166, 1948.

2. Ulbrich, C. W., "Natural variation in the analytical form of the raindrop size distribution," J. Appl. Meteor., Vol. 22, No. 10, 1764-1775, 1983.
doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2

3. Battan, L. J., Radar Observations of the Atmosphere, 323, Univ. of Chicago Press, 1973.

4. Feingold, G. and Z. Levin, "The lognormal fit to raindrop spectra from frontal convective clouds in Israel," J. Appl. Meteor., Vol. 25, 1346-1363, 1986.
doi:10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2

5. Fujiwara, M., "Raindrop-size distribution from individual storms," J. Atmos. Sci., Vol. 22, 585-591, 1965.
doi:10.1175/1520-0469(1965)022<0585:RSDFIS>2.0.CO;2

6. Tokay, D. and A. Short, "Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds," J. Appl. Meteor., Vol. 35, No. 3, 355-371, 1996.
doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2

7. Atlas, D., C. W. Ulbrich, F. D. Marks, E. Amitai, and C. R. Williams, "Systematic variation of drop size and radar --- Rainfall relations," J. Geophysical Research, Vol. 104, 6155-6169, 1999.
doi:10.1029/1998JD200098

8. Tokay, A., D. A. Short, C. R. Williams, W. L. Ecklund, and K. S. Gage, "Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements," J. Appl. Meteor., Vol. 38, No. 3, 302-320, 1999.
doi:10.1175/1520-0450(1999)038<0302:TRAWCA>2.0.CO;2

9. Maki, M., T. D. Keenan, Y. Sasaki, and K. Nakamura, "Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia," J. Appl. Meteor., Vol. 40, 1393-1412, 2001.
doi:10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2

10. Wilson, C. L. and J. Tan, "The characteristics of rainfall and melting layer in Singapore: Experimental results from radar and ground instruments," 11th International Conference on Antennas and Propagation, No. 480, 852-856, Conference Publication, Apr. 17--20, 2001.

11. Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, "Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis," J. Appl. Meteorol., Vol. 60, No. 2, 354-365, 2003.

12. Ulbrich, C. W. and D. Atlas, "Microphysics of raindrop size spectra: Tropical continental and maritime storms," J. Appl. Meteor. Climatol., Vol. 46, 1777-1791, 2007.
doi:10.1175/2007JAMC1649.1

13. Ulbrich, C. W. and D. Atlas, "Radar measurement of rainfall with and without polarimetry," J. Appl. Meteor. Climatol., Vol. 47, 1929-1939, 2008.
doi:10.1175/2007JAMC1804.1

14. Montopoli, M., F. S. Marzano, and G. Vulpiani, "Analysis and synthesis of raindrop size distribution time series from disdrometer data," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 2, 466-478, 2008.
doi:10.1109/TGRS.2007.909102

15. Distrome Ltd., Distrometer RD-69 Instruction manual, 1993.

16. Gunn, R. and G. D. Kinzer, "The terminal velocity of fall for water droplets in stagnant air," J. Atmos. Sci., Vol. 6, No. 4, 243-248, 1949.

17. Campos, E. and I. Zawadski, "Instrumental uncertainties in Z-R relations," J. Appl. Meteor., Vol. 39, 1088-1102, 2000.
doi:10.1175/1520-0450(2000)039<1088:IUIZRR>2.0.CO;2

18. Atlas, D., C. Ulbrich, F. D. Marks, R. A. Black, E. Amitai, P. T. Willis, and C. E. Samsury, "Partitioning tropical oceanic convective and stratiform rains by draft strength," J. Geoph. Res., Vol. 105, No. D2, 2259-2267, 2000.
doi:10.1029/1999JD901009

19. Zhang, G., J. Sun, and E. Brandes, "Improving parameterization of rain microphysics with disdrometer and radar observations," J. Atmos. Sci., Vol. 63, 1273-1290, 2006.
doi:10.1175/JAS3680.1

20. Cao, Q. and G. Zhang, "Errors in estimating raindrop size distribution parameters employing disdrometer and simulated raindrop spectra," J. Appl. Meteor. Climatol., Vol. 48, No. 2, 406-425, Feb. 2009.
doi:10.1175/2008JAMC2026.1

21. Smith, P. L., D. V. Kliche, and R. W. Johnson, "The bias and error in moment estimators for parameters of drop size distribution functions: sampling from gamma distributions," J. Appl. Meteor. Climatol., Vol. 48, No. 10, 2118-2126, 2009.
doi:10.1175/2009JAMC2114.1

22. Testud, J., S. Oury, R. Black, P. Amayenc, and X. Dou, "The concept of ``normalized" distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing," J. Appl. Meteorol., Vol. 40, No. 6, 1118-1140, 2000.
doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2

23. Gamache, J. F. and A. R. Houze, "Mesoscale air motions associated with a tropical squall line," Monthly Weather Review, Vol. 110, 118-135, 1982.
doi:10.1175/1520-0493(1982)110<0118:MAMAWA>2.0.CO;2

24. Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, "Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia," J. Atmos. Oceanic Technol., Vol. 26, 2107-2122, 2009.
doi:10.1175/2009JTECHA1258.1

25. Sharma, S., M. Konwar, D. K. Sarma, M. C. R. Kalapureddy, and A. R. Jain, "Characteristics of rain integral parameters during tropical convective, transition, and stratiform rain at Gadanki and its application in rain retrieval," J. Appl. Meteor. Climatol., Vol. 48, 1245-1266, 2009.
doi:10.1175/2008JAMC1948.1

26. Villarini, G. and W. F. Krajewski, "Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall," Surveys in Geophysics, Vol. 31, 107-129, 2009.

27. Ladd, D. N., C. L. Wilson, and M. Thurai, "Radar measurements from papua new guinea and their implications for TRMM PR retrieval algorithms," Geoscience and Remote Sensing, IGARSS'97, Remote Sensing --- A Scientific Vision for Sustainable Development , Vol. 4, 1648-1650, 1997.
doi:10.1109/IGARSS.1997.609004