1. Lee, K.-C., C.-W. Huang, and M.-C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
doi:10.2528/PIER08010206
2. Li, N.-J., C.-F. Hu, L.-X. Zhang, and J.-D. Xu, "Overview of RCS extrapolation techniques to aircraft targets," Progress In Electromagnetics Research B, Vol. 9, 249-262, 2008.
doi:10.2528/PIERB08080706
3. Wang, W.-T., S.-X. Gong, Y.-J. Zhang, F.-T. Zha, J. Ling, and T. Wan, "Low RCS dipole array synthesis based on MoM-PSO hybrid algorithm ," Progress In Electromagnetics Research, Vol. 94, 119-132, 2009.
doi:10.2528/PIER09060902
4. Li, X.-F., Y.-J. Xie, and R. Yang, "Bistatic RCS prediction for complex targets using modified current marching technique," Progress In Electromagnetics Research, Vol. 93, 13-28, 2009.
doi:10.2528/PIER09030804
5. Bourlier, C., H. He, J. Chauveau, R. Hémon, and P. Pouliguen, "RCS of large bent waveguide ducts from a modal analysis combined with the kirchhoff approximation," Progress In Electromagnetics Research, Vol. 88, 1-38, 2008.
doi:10.2528/PIER08101708
6. Kim, B.-C., K.-K. Park, and H.-T. Kim, "Efficient RCS prediction method using angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 65-74, 2009.
doi:10.1163/156939309787604625
7. Wang, W.-T., S.-X. Gong, X. Wang, H.-W. Yuan, J. Ling, and T.-T. Wan, "RCS reduction of array antenna by using bandstop FSS reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1505-1514, 2009.
doi:10.1163/156939309789476473
8. Park, K.-K. and H.-T. Kim, "RCS prediction acceleration and reduction of table size for the angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1657-1664, 2009.
9. Pouliguen, P., R. Hémon, C. Bourlier, J.-F. Damiens, and J. Saillard, "Analytical formulae for radar cross section of flat plates in near field and normal incidence," Progress In Electromagnetics Research B, Vol. 9, 263-279, 2008.
doi:10.2528/PIERB08081902
10. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202
11. Chen, H.-Y., P. Zhou, L. Chen, and L. Deng, "Study on the properties of surface waves in coated RAM layers and monostatic Rcsr performances of the coated slab," Progress In Electromagnetics Research M, Vol. 11, 123-135, 2010.
doi:10.2528/PIERM09122101
12. Abdelaziz, A. A., "Improving the performance of an antenna array by using radar absorbing cover," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
doi:10.2528/PIERL07112503
13. Bondeson, A., Y. Yang, and P. Weinerfelt, "Shape optimization for radar cross sections by a gradient method," International Journal for Numerical Methods in Engineering, Vol. 61, No. 5, 687-715, 2004.
doi:10.1002/nme.1088
14. Lee, C., S. Lee, and R. Chou, "RCS reduction of a cylindrical cavity by dielectric coating," 1986 Antennas and Propagation Society International Symposium, Vol. 24, 305-308, 1986.
doi:10.1109/APS.1986.1149727
15. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction in planar, cylindrical, and spherical structures by composite coatings using genetic algorithms," 1999 Antennas and Propagation Society International Symposium, Vol. 1, 438-441, 1999.
16. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803
17. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07121107
18. Martini, E.S. Maci, and A. D. Yaghian, "Phase and group velocities in three-dimensional ideal cloaks," 3rd European Conference on Antennas and Propagation, 3244-3248, 2009.
19. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628
20. Salisbury, W. W., Absorbent Body for Electromagnetic Waves, US Patent 2 599 944, Jun. 10 1952.
21. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1443-1454, October 1988.
doi:10.1109/8.8632
22. Engheta, N., "Thin absorbing screens using metamaterial surfaces," Proc. IEEE Antennas and Propagation Society International Symposium, 392-395, 2002.
23. Engheta, N., "Thin absorbing screens using metamaterial surfaces," Proc. IEEE Antennas and Propagation Society International Symposium , 392-395, 2002.
24. Oraizi, H. and A. Abdolali, "Combination of MLS, GA and CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIERB07120803
25. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1385-1395, 2009.
doi:10.1163/156939309789108606
26. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409
27. Bucinskas, J., L. Nickelson, and V. Shugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial-glass cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711
28. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, May 2010.
doi:10.1109/TAP.2010.2044329
29. Zhang, Y., R. Mittra, and B. Z. Wang, "Novel design for low-RCS screens using a combination of dual-AMC," Antennas and Propagation Society Intl. Symposium, 1-4, June 2009.
doi:10.1155/2009/830931
30. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, December 2007.
doi:10.1109/TAP.2007.910306
31. Iriarte, J. C., M. Paquay, I. Ederra, R. Gonzalo, and P. de Maagt, "RCS reduction in a chessboard-like structure using AMC cells," 2nd European Conference on Antennas and Propagation, 1-4, November 2007.
32. Iriarte, J. C., I. Ederra, R. Gonzalo, and P. de Maagt, "Dual band RCS reduction using planar technology by combining AMC structures," 3rd European Conference on Antennas and Propagation, 3708-3709, 2009.
33. Zhang, Y., R. Mittra, B. Z. Wang, and N. T. Huang, "AMCs for ultra-thin and broadband RAM design," Electronics Letters, Vol. 45, No. 10, 484-485, 2009.
doi:10.1049/el.2009.3161
34. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 980-992, March 2004.
doi:10.1109/TMTT.2004.823579
35. De Cos, M. E., Y. Álvarez, and F. Las-Heras, "Planar artificial magnetic conductor: Design and characterization setup in the RFID SHF band," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1467-1478, 2009.
doi:10.1163/156939309789476248
36. Li, Y., et al., "Prototyping dual-band artificial magnetic conductors with laser micromachining," Proc. of WARS2006 Conference, Leura, NSW, Australia, Feb. 2006.
37. Alvarez, Y., M. E. De Cos, and F. Las-Heras, "RCS measurement setup for periodic structure prototype characterization," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 100-106, Jun. 2010.
doi:10.1109/MAP.2010.5586586
38. De Cos, M. E., Y. Álvarez Lopez, F. Las-Heras, and , "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402