Vol. 117
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-30
On the Influence of Coupling AMC Resonances for RCS Reduction in the SHF Band
By
Progress In Electromagnetics Research, Vol. 117, 103-119, 2011
Abstract
A novel approach to Radar Cross-Section reduction using a thin Artificial Magnetic Conductor (AMC) structure is presented. The novel AMC structure combines two unit-cell metallization sizes and so it presents two resonant frequencies. RCS reduction is based on destructive interference of two partial reflections. Taking as starting point a previous work showing significant RCS reduction based on the combination of two AMC surfaces with overlapped AMC operation bandwidths (so that they have similar reflection coefficient amplitude) without a 180º-phaseshift, the key point of this contribution is to analyze the influence of the degree of the aforementioned overlapping on RCS reduction and to show that this achievement is based on coupling phenomena. A comparison of the achieved RCS reduction when combining two AMCs whose AMC operation bandwidth overlaps, two AMCs with non-overlapped AMC operation bandwidths, and PEC-AMC is presented. Prototypes of these three combinations have been manufactured (having them the same size) and their RCS has been measured in an anechoic chamber.
Citation
María Elena de Cos Gómez, Yuri Alvarez-Lopez, and Fernando Las Heras Andres, "On the Influence of Coupling AMC Resonances for RCS Reduction in the SHF Band," Progress In Electromagnetics Research, Vol. 117, 103-119, 2011.
doi:10.2528/PIER11040103
References

1. Lee, K.-C., C.-W. Huang, and M.-C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
doi:10.2528/PIER08010206

2. Li, N.-J., C.-F. Hu, L.-X. Zhang, and J.-D. Xu, "Overview of RCS extrapolation techniques to aircraft targets," Progress In Electromagnetics Research B, Vol. 9, 249-262, 2008.
doi:10.2528/PIERB08080706

3. Wang, W.-T., S.-X. Gong, Y.-J. Zhang, F.-T. Zha, J. Ling, and T. Wan, "Low RCS dipole array synthesis based on MoM-PSO hybrid algorithm ," Progress In Electromagnetics Research, Vol. 94, 119-132, 2009.
doi:10.2528/PIER09060902

4. Li, X.-F., Y.-J. Xie, and R. Yang, "Bistatic RCS prediction for complex targets using modified current marching technique," Progress In Electromagnetics Research, Vol. 93, 13-28, 2009.
doi:10.2528/PIER09030804

5. Bourlier, C., H. He, J. Chauveau, R. Hémon, and P. Pouliguen, "RCS of large bent waveguide ducts from a modal analysis combined with the kirchhoff approximation," Progress In Electromagnetics Research, Vol. 88, 1-38, 2008.
doi:10.2528/PIER08101708

6. Kim, B.-C., K.-K. Park, and H.-T. Kim, "Efficient RCS prediction method using angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 65-74, 2009.
doi:10.1163/156939309787604625

7. Wang, W.-T., S.-X. Gong, X. Wang, H.-W. Yuan, J. Ling, and T.-T. Wan, "RCS reduction of array antenna by using bandstop FSS reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1505-1514, 2009.
doi:10.1163/156939309789476473

8. Park, K.-K. and H.-T. Kim, "RCS prediction acceleration and reduction of table size for the angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1657-1664, 2009.

9. Pouliguen, P., R. Hémon, C. Bourlier, J.-F. Damiens, and J. Saillard, "Analytical formulae for radar cross section of flat plates in near field and normal incidence," Progress In Electromagnetics Research B, Vol. 9, 263-279, 2008.
doi:10.2528/PIERB08081902

10. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202

11. Chen, H.-Y., P. Zhou, L. Chen, and L. Deng, "Study on the properties of surface waves in coated RAM layers and monostatic Rcsr performances of the coated slab," Progress In Electromagnetics Research M, Vol. 11, 123-135, 2010.
doi:10.2528/PIERM09122101

12. Abdelaziz, A. A., "Improving the performance of an antenna array by using radar absorbing cover," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
doi:10.2528/PIERL07112503

13. Bondeson, A., Y. Yang, and P. Weinerfelt, "Shape optimization for radar cross sections by a gradient method," International Journal for Numerical Methods in Engineering, Vol. 61, No. 5, 687-715, 2004.
doi:10.1002/nme.1088

14. Lee, C., S. Lee, and R. Chou, "RCS reduction of a cylindrical cavity by dielectric coating," 1986 Antennas and Propagation Society International Symposium, Vol. 24, 305-308, 1986.
doi:10.1109/APS.1986.1149727

15. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction in planar, cylindrical, and spherical structures by composite coatings using genetic algorithms," 1999 Antennas and Propagation Society International Symposium, Vol. 1, 438-441, 1999.

16. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

17. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07121107

18. Martini, E.S. Maci, and A. D. Yaghian, "Phase and group velocities in three-dimensional ideal cloaks," 3rd European Conference on Antennas and Propagation, 3244-3248, 2009.

19. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

20. Salisbury, W. W., Absorbent Body for Electromagnetic Waves, US Patent 2 599 944, Jun. 10 1952.

21. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1443-1454, October 1988.
doi:10.1109/8.8632

22. Engheta, N., "Thin absorbing screens using metamaterial surfaces," Proc. IEEE Antennas and Propagation Society International Symposium, 392-395, 2002.

23. Engheta, N., "Thin absorbing screens using metamaterial surfaces," Proc. IEEE Antennas and Propagation Society International Symposium , 392-395, 2002.

24. Oraizi, H. and A. Abdolali, "Combination of MLS, GA and CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIERB07120803

25. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1385-1395, 2009.
doi:10.1163/156939309789108606

26. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

27. Bucinskas, J., L. Nickelson, and V. Shugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial-glass cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711

28. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, May 2010.
doi:10.1109/TAP.2010.2044329

29. Zhang, Y., R. Mittra, and B. Z. Wang, "Novel design for low-RCS screens using a combination of dual-AMC," Antennas and Propagation Society Intl. Symposium, 1-4, June 2009.
doi:10.1155/2009/830931

30. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, December 2007.
doi:10.1109/TAP.2007.910306

31. Iriarte, J. C., M. Paquay, I. Ederra, R. Gonzalo, and P. de Maagt, "RCS reduction in a chessboard-like structure using AMC cells," 2nd European Conference on Antennas and Propagation, 1-4, November 2007.

32. Iriarte, J. C., I. Ederra, R. Gonzalo, and P. de Maagt, "Dual band RCS reduction using planar technology by combining AMC structures," 3rd European Conference on Antennas and Propagation, 3708-3709, 2009.

33. Zhang, Y., R. Mittra, B. Z. Wang, and N. T. Huang, "AMCs for ultra-thin and broadband RAM design," Electronics Letters, Vol. 45, No. 10, 484-485, 2009.
doi:10.1049/el.2009.3161

34. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 980-992, March 2004.
doi:10.1109/TMTT.2004.823579

35. De Cos, M. E., Y. Álvarez, and F. Las-Heras, "Planar artificial magnetic conductor: Design and characterization setup in the RFID SHF band," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1467-1478, 2009.
doi:10.1163/156939309789476248

36. Li, Y., et al., "Prototyping dual-band artificial magnetic conductors with laser micromachining," Proc. of WARS2006 Conference, Leura, NSW, Australia, Feb. 2006.

37. Alvarez, Y., M. E. De Cos, and F. Las-Heras, "RCS measurement setup for periodic structure prototype characterization," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 100-106, Jun. 2010.
doi:10.1109/MAP.2010.5586586

38. De Cos, M. E., Y. Álvarez Lopez, F. Las-Heras, and , "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402