Vol. 116
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-06
Optimum Design for Improving Modulating-Effect of Coaxial Magnetic Gear Using Response Surface Methodology and Genetic Algorithm
By
Progress In Electromagnetics Research, Vol. 116, 297-312, 2011
Abstract
Coaxial magnetic gear (CMG) is a non-contact device for torque transmission and speed variation which exhibits promising potential in several industrial applications, such as electric vehicles, wind power generation and vessel propulsion. CMG works lying on the modulating-effect aroused by the ferromagnetic segments. This paper investigates the optimum design for improving the modulating-effect. Firstly, the operating principle and the modulating-effect is analyzed by using 1-D field model, which demonstrates that the modulatingeffect is essential for the torque transmission capacity of CMGs, and the shape of the ferromagnetic segments have impact on the modulatingeffect. Secondly, the fitted model of the relationship between the maximum pull-out torque and the shape factors including radial height, outer-edge width-angle and inner-edge width-angle is built up by using surface response methodology. Moreover, FEM is engaged to evaluate its accuracy. Thirdly, the optimum shape of the ferromagnetic segment is obtained by using genetical algorithm.
Citation
Linni Jian, Guoqing Xu, Jianjian Song, Honghong Xue, Dongfang Zhao, and Jianing Liang, "Optimum Design for Improving Modulating-Effect of Coaxial Magnetic Gear Using Response Surface Methodology and Genetic Algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.
doi:10.2528/PIER11032316
References

1. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, 2001.
doi:10.1109/20.951324

2. Atallah, K., S. Calverley, and D. Howe, "Design, analysis and realization of a high-performance magnetic gear," IEE Proc. Electric Power Appl., Vol. 151, No. 2, 135-143, 2004.
doi:10.1049/ip-epa:20040224

3. Rasmussen, P., T. Andersen, F. Jorgensen, and O. Nielsen, "Development of a high-performance magnetic gear," IEEE Trans. Ind. Appl., Vol. 41, No. 3, 764-770, 2005.
doi:10.1109/TIA.2005.847319

4. Jian, L., K. T. Chau, Y. Gong, J. Jiang, C. Yu, and W. Li, "Comparison of coaxial magnetic gears with different topologies," IEEE Trans. Magn., Vol. 45, No. 10, 4526-4529, 2009.
doi:10.1109/TMAG.2009.2021662

5. Jian, L. and K. T. Chau, "A coaxial magnetic gear with halbach permanent-magnet arrays," IEEE Trans. Energy Conversion, Vol. 25, No. 2, 319-328, 2010.
doi:10.1109/TEC.2010.2046997

6. Liu, X., K. T. Chau, J. Jiang, and C. Yu, "Design and analysis of interior-magnet outer-rotor concentric magnetic gears," Journal of Applied Physics, Vol. 105, No. 7, 1-3, 2009.

7. Jian, L. and K.-T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Eletromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301

8. Lubin, T., S. Mezani, and A. Rezzoug, "Analytical computation of the magnetic field distribution in a magnetic gear," IEEE Trans. Magn., Vol. 46, No. 7, 2611-2621, 2010.
doi:10.1109/TMAG.2010.2044187

9. Jian, L., K. T. Chau, and J. Jiang, "A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation," IEEE Trans. Ind. Appl., Vol. 45, No. 3, 954-962, 2009.
doi:10.1109/TIA.2009.2018974

10. Jian, L., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magneticgear-integrated wind power generator using time-stepping finite element method," Progress In Eletromagnetics Research, Vol. 113, 351-367, 2011.

11. Jian, L. and K.-T. Chau, "Design and analysis of a magneticgeared electronic-continuously variable transmission system using finite element method ," Progress In Eletromagnetics Research, Vol. 107, 47-61, 2010.
doi:10.2528/PIER10062806

12. Frank, N. and H. Toliyat, "Gearing ratios of a magnetic gear for marine applications," IEEE Electric Ship Technologies Symposium, ESTS 2009, 477-481, 2009.
doi:10.1109/ESTS.2009.4906554

13. Hong, D., B. Woo, D. Koo, and D. Kang, "Optimum design of transverse °ux linear motor for weight reduction and improvement thrust force using response surface methodology," IEEE Trans. Magn., Vol. 44, No. 11, 4317-4320, 2008.
doi:10.1109/TMAG.2008.2002474

14. Choi, Y., H. Kim, and J. Lee, "Optimum design criteria or maximum torque density and minimum torque ripple of SynRM according to the rated wattage using response surface methodology," IEEE Trans. Magn., Vol. 44, No. 11, 4135-4138, 2008.
doi:10.1109/TMAG.2008.2002518

15. Hasanien, H., A. Abd-Rabou, and S. Sakr, "Design optimization of transverse flux linear motor for weight reduction and performance improvement using response surface methodology and genetic algorithms," IEEE Trans. Energy Conversion, Vol. 25, No. 3, 598-605, 2010.
doi:10.1109/TEC.2010.2050591

16. Jian, L., K. T. Chau, W. Li, and J. Li, "A novel coaxial magnetic gear using bulk HTS for industrial applications," IEEE Trans. Appl. Superconduc., Vol. 20, No. 3, 981-984, 2010.
doi:10.1109/TASC.2010.2040609

17. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Eletromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201

18. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Eletromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

19. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping fite element analysis of broken bars fault in a three-phase squirrel-cage induction motor," Progress In Eletromagnetics Research, Vol. 68, 53-70, 2007.
doi:10.2528/PIER06080903

20. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network ," Progress In Eletromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303

21. Lecointe, J.-P., B. Cassoret, and J. F. Brudny, "Distinction of toothing and saturation effects on magnetic noise of induction motors," Progress In Eletromagnetics Research, Vol. 112, 125-137, 2011.

22. Li, J., Z. Liu, M. Jabbar, and X. Gao, "Design optimization for cogging torque minimization using response surface methodology," IEEE Trans. Magn., Vol. 40, No. 2, 1176-1179, 2004.
doi:10.1109/TMAG.2004.824809

23. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring sierpinski carpet arrays optimized by genetic algorithms," Progress In Eletromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110

24. Reza, A. W., M. S. Sarker, and K. Dimyati, "A novel integrated mathematical approach of ray-tracing and genetic algorithm for optimizing indoor wireless coverage," Progress In Eletromagnetics Research, Vol. 110, 147-162, 2010.
doi:10.2528/PIER10091701

25. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-effincy wide-band multimodal square horns for discrete lenses," Progress In Eletromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806