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RESPONSE SURFACE METHODOLOGY AND GENETIC
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Abstract—Coaxial magnetic gear (CMG) is a non-contact device
for torque transmission and speed variation which exhibits promising
potential in several industrial applications, such as electric vehicles,
wind power generation and vessel propulsion. CMG works lying on the
modulating-effect aroused by the ferromagnetic segments. This paper
investigates the optimum design for improving the modulating-effect.
Firstly, the operating principle and the modulating-effect is analyzed
by using 1-D field model, which demonstrates that the modulating-
effect is essential for the torque transmission capacity of CMGs, and the
shape of the ferromagnetic segments have impact on the modulating-
effect. Secondly, the fitted model of the relationship between the
maximum pull-out torque and the shape factors including radial height,
outer-edge width-angle and inner-edge width-angle is built up by using
surface response methodology. Moreover, FEM is engaged to evaluate
its accuracy. Thirdly, the optimum shape of the ferromagnetic segment
is obtained by using genetical algorithm.
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1. INTRODUCTION

As a newly emerging device, coaxial magnetic gears (CMGs) have
attracted increasing attention recently. On one hand, they are able
to achieve speed variation as well as torque transmission, just like
the mechanical gears; On the other hand, they can overcome the
disadvantages of their mechanical counterparts, such as, friction loss,
audible noise, mechanical vibration and need of regular lubrication
and maintenance. Moreover, they are able to offer physical isolation
between the input side and the output side, and self-protection when
overloaded.

CMG was firstly proposed in [1], in which, a device works
lying on the magnetic field modulation was analyzed and simulated.
Then, several CMGs with different gear ratios were investigated [2].
Moreover, the thickness of the modulating ring was found to have
impact on the maximum pull-out torque of the CMG. In [3], a CMG
with the spoke type of permanent magnets (PMs) employed on the
inner-rotor was proposed. In order to improve the torque transmission
capacity, as well as reduce torque ripples, Halbach PM arrays were
adopted on both the inner-rotor and the outer-rotor [4]. In [5], each
modulated harmonics was identified, which shows that some of the field
harmonics have contribution to the stable torque transmission and the
speed variation, while the others just arouse torque ripples. In [6], the
surface-inset PMs are used on the outer-rotor, and it also unveils that
the width of the ferromagnetic segments on the modulating ring could
affect the maximum pull-out torque. In [7] and [8], the magnetic field
distribution in the CMG was analytically calculated. Although the
nonlinear characteristic of the ferromagnetic materials has not been
taken into account, the calculation results were acceptable compared
with that obtained by using finite element method (FEM). CMGs also
exhibit their potential in several industrial applications, such as wind
power generation [9, 10], electric vehicles [11] and ship propulsion [12].

The purpose of this paper is to investigate the optimum design
for improving the modulating-effect of the CMG, so as to improve
its torque transmission capacity. In Section 2, the modulating effect
will be introduced and analyzed by using 1-D field model. In
Section 3, response surface methodology [13–15] will be adopted to
find out the relationship between the maximum pull-out torque and
the shape factors of the ferromagnetic segments. After that, the
genetic algorithm will be engaged to determine the optimum design
in Section 4. Finally, conclusions will be drawn in Section 5.
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2. MODULATING-EFFECT OF COAXIAL MAGNETIC
GEAR

As shown in Figure 1, the effective components of the CMG consist
of two rotational parts: the outer-rotor and the inner-rotor, and one
stationary part: the modulating ring. It can be observed that, PMs
are mounted on the inner surface of the outer-rotor, and the outer
surface of the inner-rotor, respectively. Ferromagnetic segments are
symmetrically deployed on the modulating ring. By defining p1, p2 as
the pole-pair numbers of the PMs on the outer-rotor and inner-rotor,
respectively, and Ns as the number of ferromagnetic segments, when
they satisfy:

Ns = p1 + p2 (1)

the operation of the magnetic gear can be given by:

ω2 = −Grω1 (2)

Gr =
p1

p2
(3)

where ω1, ω2 are the rotational speeds of the outer-rotor and inner-
rotor respectively, and Gr is the gear ratio. The minus sign indicates
that the two rotors rotate in opposite directions.

The operation of the CMG lies on the modulating-effect of the
modulating ring. Assuming that the modulating ring is removed, the
PMs on the outer-rotor and the inner-rotor could excite their magnetic
fields in the space between the two rotors. It is easy to know that the
space pole-pair numbers of the magnetic fields produced by the outer-
rotor and the inner-rotor are equal to p1 and p2, respectively. Since
they do not match with each other, stable torque transmission can not

Figure 1. Coaxial magnetic gear.
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be achieved, which means when the outer-rotor is dragged to rotate,
the inner-rotor will keep still, and vice versa. Once the modulating
ring is equipped, it becomes a totally different case. Due to the perfect
magnetic conductivity of the ferromagnetic segments, the magnetic
field excited by the outer-rotor will be modulated into a field consisting
of abundant harmonics, in which, a harmonic component with the pole-
pair number equal to p2 could interact with the magnetic field produced
by the inner-rotor. Similarly, the magnetic field excited by the inner-
rotor will also be modulated, and there is a harmonic component with
the pole-pair number equal to p1 could interact with the magnetic field
produced by the outer-rotor. Actually, there are many other harmonics
involved in the torque transmission and speed variation [5].

The modulating-effect can be simply analyzed by using 1-D field
model [16]. Figures 2(a) and 2(b) shows the cases when only the
PMs on one rotor are taken into account. In 1-D field model,
the circumferential component of magnetic field is ignored, and the
magnetic flux lines are assumed to go directly up and down in radial
direction. Thus, the magnetic flux density excited by the outer-
rotor PMs Bom and that excited by the inner-rotor PMs Bim can be
expressed as:

Bom(θ) = Fom(θ)P (θ) (4)
Bim(θ) = Fim(θ)P (θ) (5)

(a) (b)

(c) (d)

Figure 2. 1-D magnetic field model.
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where Fim, Fom are the magneto motive forces (MMFs) provided by
the inner-rotor PMs and the outer-rotor PMs, respectively, and P (θ)
is the magnetic permeance in radial direction. Without considering
the high-order harmonics, the MMFs can be written in the form of
fundamental components:

Fom(θ) =
Borhom cos p1(θ + ω1t + α0)

µ0
(6)

Fim(θ) =
Birhim cos p2(θ + ω2t + β0)

µ0
(7)

where Bor, hom and α0 are the remanence, the height in radial direction
and the initial phase angle of the outer-rotor PMs, respectively, while,
Bir, him and β0 are the remanence, the height in radial direction and
the initial phase angle of the inner-rotor PMs, respectively.

The ferromagnetic segment is shown in detail in Figure 2(c).
θup and θdown denote the width in circumferential direction of the
outer-edge and the inner-edge, respectively, hs denotes the height in
radial direction. Herein, we assume θup = θdown = θs, the magnetic
permeance can be expressed as:

P (θ) =
1

ρim + ρom + ρig + ρog + ρs(θ)
(8)

where ρim = him/µ0, ρom = hom/µ0, ρig = hig/µ0 and ρog = hog/µ0

are the magnetic reluctance of the inner-rotor PMs, the outer-rotor
PMs, the inner air-gap and the outer air-gap, respectively, ρs(θ) is the
magnetic reluctance of the modulating ring, ρs(θ) = hs/µ0 when it
corresponding to the air-slot, while, ρs(θ) = 0 when it corresponding
to the ferromagnetic segments, hig and hog are the height of the inner
air-gap and the outer air-gap, respectively.

Consequently, the waveform of the magnetic permeance is shown
in Figure 2(d). It can be expanded in form of Fourier series:

P (θ) = P0 +
+∞∑

j=1

Pj cos jNs

(
θ − θs

2

)
(9)

P0 =
(

1− Nsθs

2π

)
Pl +

Nsθs

2π
Ph (10)

Pj =
Ph − Pl

jπ

√
2(1− cos jNsθs) (11)

Ph =
µ0

him + hom + hig + hog
(12)

Pl =
µ0

him + hom + hig + hog + hs
(13)
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Substituting (6)–(13) into (4), the fundamental components of the
magnetic flux density excited by the outer-rotor PMs can be obtained
as:

B0
om =

P0Borhom cos p1(θ + ω1t + α0)
µ0

(14)

Moreover, the first-order harmonic aroused by the modulating-effect
can be given by:

B1
om =

P1Borhom cos p2

(
θ −Grω1t + α0

p2
+ θs

2p2

)

µ0
(15)

Similarly, by substituting (6)–(13) into (5), the fundamental
components of the magnetic flux density excited by the inner-rotor
PMs can be obtained as:

B0
im =

P0Birhim cos p2(θ + ω2t + β0)
µ0

(16)

In addition, the first-order harmonic aroused by the modulating-effect
can be given by:

B1
im =

P1Birhim cos p1

(
θ − 1

Gr
ω2t + β0

p1
+ θs

2p1

)

µ0
(17)

From (14)–(17), It can be found that the components B0
om and

B1
im have the same pole-pair number and the rotational speed. Thus,

they can interact with each other to develop stable magnetic torque,
In addition, the components B0

im and B1
om have the same pole-pair

number and the rotational speed. Thus, they can also interact with
each other to develop stable magnetic torque. The maximum pull-out
torques can be given by:

Tmax =
P0P1BorBirhomhimL

µ2
0

(18)

where L is the axial length of the CMG.
It can be seen that the term BorBirhomhimL is corresponding

to the magnetic intensity provided by the PMs, while the term P0P1

represents the modulating-effect of the modulating ring. With the
contribution of both the magnetic intensity and the modulating-effect,
the pull-out torque is generated. From (10)–(13), it can be found
that the modulating is strongly related to the shape factors of the
ferromagnetic segments, such as, the height in radial direction hs

and the width in circumferential direction θs. Although the 1-D field
model is very convenient for analyzing the modulating-effect and the
operating principle of CMG, it is not a satisfactory tool for optimum
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design of the ferromagnetic segments since the assumption of ignoring
the circumferential component of magnetic field is adopted. Actually,
the circumferential component does exist, and has impact on the
performance of the CMG.

3. SHAPE FACTORS OF FERROMAGNETIC
SEGMENTS AND THEIR IMPACT ON
MODULATING-EFFECT

As shown in Figure 2(c), the shape factors of the ferromagnetic segment
include the width-angle in circumferential direction of the outer-edge
and the inner-edge θup and θdown, and the height in radial direction
hs. In this section, their impact on the modulating-effect which can
be observed from the maximum pull-out torque will be investigated.
The other sizes which are kept unchanged are listed in Table 1. The
thickness of the inner-rotor PMs him will change with the hs, so as to
keep the volume of the inner-rotor PMs unchanged.

Response surface methodology (RSM) is a statistical technique for
finding the best-fitted relationship between the design variables and the
response. Firstly, the true functional relationship can be expressed as:

Y = f(X) (19)

where Y is the response vector, X is the design variable vector. The
form of the true response function f is to be determined. For this case,

Table 1. Unchanged sizes of CMG considered.

Radius of outside surface of outer-rotor 90mm
Thickness of outer-rotor iron yoke 7mm

Thickness of outer-rotor PMs 6mm
Length of outer air-gap 1mm

Thickness of inner-rotor iron yoke 15mm

Table 2. Design variables and scaled units.

hs/x1 3 mm/−1 16.5mm/0 30mm/1
θup/x2 3Deg./−1 10.5 Deg./0 18Deg./1
θup/x2 3Deg./−1 10.5 Deg./0 18Deg./1
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the second-order model is used to approximate the response function:

Y = β0 +
k∑

j=1

βjxj +
k∑

i,j=1

βijxixj + ε (20)

where Y denotes the maximum pull-out torque, β is the regression
coefficients, ε is the random error. The number of the design variables
k = 3, and x1, x2 and x3 are the centered and scaled design units of
hs, θup and θdown.

Secondly, the central composite design (CCD) is applied to
construct the samples to be investigated. In order to get the
comprehensive knowledge of the response function, a wide region of
the design variables as shown in Table 2 is investigated. consequently,
15 samples listed in Table 3 are determined.

Thirdly, Finite element method (FEM) is engaged to calculated
the maximum pull-out torque of these 15 samples. FEM is a
widely acknowledged tool for analyzing and designing electromagnetic
devices [17–21]. Figure 3 shows the flux line distributions of the
selected simples, and the calculated maximum pull-out torques are
given in Table 3.

Fourthly, the least-squares method is used to estimate the

Table 3. Samples to be investigated.

Case No. hs (mm) θup (Deg.) θdown (Deg.) him (mm) Torque (Nm)

1 30 18 18 8.5445 58.979696

2 30 18 3 8.5445 78.579435

3 30 3 18 8.5445 90.073385

4 30 3 3 8.5445 82.874360

5 3 18 18 5.0075 38.144822

6 3 18 3 5.0075 56.184524

7 3 3 18 5.0075 60.808025

8 3 3 3 5.0075 23.226907

9 16.5 10.5 18 6.2865 119.45689

10 16.5 10.5 3 6.2865 114.90713

11 16.5 18 10.5 6.2865 101.466832

12 16.5 3 10.5 6.2865 99.092563

13 30 10.5 10.5 8.5445 106.96553

14 3 10.5 10.5 5.0075 79.396921

15 16.5 10.5 10.5 6.2865 124.660785
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unknown regression coefficients β:

β̂ = (XT X)−1XT Y (21)

where XT is the transpose of X. The fitted response Y is given by:

Ŷ = Xβ̂ (22)

According to the results listed in Tables 2 and 3, the fitted second-order
polynomial function is:

Y = 125.02522 + 1597.112x1 − 2.27199x2 + 1.16905x3

−31.68510x2
1 − 24.58663x2

2 − 7.68432x2
3

−5.71038x1x2 − 2.399277x1x3 − 10.30245x2x3 (23)

Finally, the analysis-of-variance (ANOVA) [22] is engaged to
examine the fitted model (23) to ensure that it could provide an

Figure 3. Flux line distribution.
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adequate approximation for the true response. Herein, the total
number of parameters in the fitted model M is 10, while the number of
the simples N equals 15, thus the degree of freedom of the regression
and the residual equals 9 and 5, respectively. The total variation is a
set of data called the total sum of squares (SST) of deviations of the
observed Yu about their average value Ȳ :

SST =
N∑

j=1

(
Yu − Ȳ 2

)
(24)

The SST can be partitioned into two parts, the sum of squares due
to regression (SSR) (or sum of squares explained by the fitted model)
and the sum of squares unaccounted for by the fitted (or sum squares
of error(SSE)). The formula for calculation the SSR is:

SSR =
N∑

j=1

(
Ŷu − Ȳ 2

)
(25)

where Ŷu is the predicted value for the u-th case by using the fitted
model (23). SSR means the difference between the predicted value and
the overall average value observed.

The SSE by the fitted model is:

SSE =
N∑

j=1

(
Yu − Ŷ 2

u

)
(26)

The coefficient of determination R2 can be obtained from SST and
SSR by:

R2 =
SSR
SST

(27)

It is a measure of the proportion of total variation of the values
of Yu about the mean Ȳ explained by the fitted model. A related
statistic, named the adjusted coefficient of determination R2

A is given
by:

R2
A = 1− SSE/(N −M)

SST/(N − 1)
(28)

It is a measure of the proportion of the estimate of the error
variance provided by the residual mean square of the error variance
estimate using the total mean square. Table 4 shows the results
of ANOVA. It can be seen that the coefficient of determination R2

is 0.9883, while the adjusted coefficient of determination R2
A equals

0.9673. This means that the second-order polynomials have a good
accuracy for this range of design variables.
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The comparison between the ‘true’ value calculated by using
FEM and the fitted value calculated by using the fitted model (23)
is illustrated in Figures 4 and 5. In Figure 4, θup is chosen to be equal
to θdown, and denoted by θ, and the variation of the maximum pull-out
torque with hs and θ is plotted. In Figure 5, hs is chosen to be 15 mm,
and the variation of the maximum pull-out torque with θup and θdown

is plotted. Obviously, the shape of the fitted response surface is very
close to that of the ‘true’ response surface.

4. DESIGN OPTIMIZATION

Since the fitted model (23) could approximate the impact of the shape
factors of ferromagnetic segments on the torque transmission capacity
with good accuracy, in this section, the optimum solution that results
in the maximum pull-out torque will be analyzed. The optimization

Table 4. Analysis of variance.

Source Regression Residual Total

Degree of Freedom 9 5 14

Sum of Squares 12642 149.33340 12792

Mean Square 1404.71215 29.86668 -

F -Statistic 47.03 - -

Coefficient of Determination R2 0.9883 - -

Adjusted Coefficient of Determination R2
A 0.9673 - -

(a) (b)

Figure 4. Comparison of response surfaces over {θup = θdown ∈
[3, 18], hs ∈ [3, 30]}. (a) True value. (b) Fitted value.



308 Jian et al.

(a) (b)

Figure 5. Comparison of response surfaces over {θup ∈
[3, 18], θdown ∈ [3, 18], hs = 15}. (a) True value. (b) Fitted value.

problem is given by:
min−Y = −f(X)

s.t. {X = [x1, x2, x3]T ; x1 ∈ [−1, 1];x2 ∈ [−1, 1];x3 ∈ [−1, 1]}(29)
where the function Y = f(X) is given in (23).

Genetic algorithm [23–25] is engaged to solve this problem.
Firstly, the first generation of chromosomes is randomly generated.
The number of chromosomes is also named as population size. Usually,
the population size can range from 50–1000 according to the accuracy
required and the complexity of the problem. Herein, the population
size is chosen as 50. Once the initial population is generated, the
performance of the objective function is evaluated. The chromosome
which could result in the minimum value of the objective function
will be reproduced in the next generation. While, the others will be
operated by either the crossover operation or mutation operation, so
as to produce the new chromosomes of the next generation. Inspired
by the role of natural selection in evolution, the genetic algorithm
will repeat the aforementioned process of evaluation, selection and
generation to keep the “most fit” chromosome survive, and the “least
fit” chromosome eliminated. Once the average change in the fitness
value is less than the predetermined upper bound, the optimization
will be terminated, and the optimum solution is obtained.

Figure 6(a) shows the history of genetic algorithm optimization
at each generation. It can be seen that after 30th iterations, the
fitted maximum pull-out torque is kept unchanged, which is equal to
127.2087Nm. The optimal solution is x1 = 0.2559, x2 = −0.0908 and
x3 = 0.0700. After transformation, it yields that hs = 19.95465 mm,
θup = 9.819Deg. and θdown = 11.025Deg.. Finally, the FEM
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(a) (b)

Figure 6. Optimization using genetic algorithm. (a) Maximum
pullout torque at each generation. (b) Flux line distribution in optimal
case.

is used to evaluate the optimum case. Its flux line distribution is
plotted in Figure 6(b), and the calculated maximum pull-out torque
is 126.21623 Nm, which agrees well with the value given by the fitted
model.

5. CONCLUSIONS

In this paper, the optimum design for improving the modulating-
effect of coaxial magnetic gear (CMG) is investigated. Firstly, the
operating principle and the modulating-effect of CMG is analyzed by
using 1-D field model, which demonstrates that the modulating-effect is
essential for the torque transmission capacity of CMGs, and the shape
of the ferromagnetic segments have impact on the modulating-effect.
Secondly, the fitted model of the relationship between the maximum
pull-out torque and the shape factors including radial height, outer-
edge width-angle and the inner-edge width-angle is built up by using
surface response methodology. Moreover, FEM is engaged to evaluate
its accuracy. Thirdly, the optimum shape of the ferromagnetic segment
is obtained by using genetical algorithm.
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