Vol. 116
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-04-26
Magnetic Resonance Brain Image Classification by an Improved Artificial Bee Colony Algorithm
By
Progress In Electromagnetics Research, Vol. 116, 65-79, 2011
Abstract
Automated and accurate classification of magnetic resonance (MR) brain images is a hot topic in the field of neuroimaging. Recently many different and innovative methods have been proposed to improve upon this technology. In this study, we presented a hybrid method based on forward neural network (FNN) to classify an MR brain image as normal or abnormal. The method first employed a discrete wavelet transform to extract features from images, and then applied the technique of principle component analysis (PCA) to reduce the size of the features. The reduced features were sent to an FNN, of which the parameters were optimized via an improved artificial bee colony (ABC) algorithm based on both fitness scaling and chaotic theory. We referred to the improved algorithm as scaled chaotic artificial bee colony (SCABC). Moreover, the K-fold stratified cross validation was employed to avoid overfitting. In the experiment, we applied the proposed method on the data set of T2-weighted MRI images consisting of 66 brain images (18 normal and 48 abnormal). The proposed SCABC was compared with traditional training methods such as BP, momentum BP, genetic algorithm, elite genetic algorithm with migration, simulated annealing, and ABC. Each algorithm was run 20 times to reduce randomness. The results show that our SCABC can obtain the least mean MSE and 100% classification accuracy.
Citation
Yudong Zhang, Lenan Wu, and Shuihua Wang, "Magnetic Resonance Brain Image Classification by an Improved Artificial Bee Colony Algorithm," Progress In Electromagnetics Research, Vol. 116, 65-79, 2011.
doi:10.2528/PIER11031709
References

1. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504

2. Hynynen, K., "MRI-guided focused ultrasound treatments," Ultrasonics, Vol. 50, No. 2, 221-229, 2010.
doi:10.1016/j.ultras.2009.08.015

3. Ravaud, R. and G. Lemarquand, "Magnetic field in MRI yokeless devices: Analytical approach," Progress In Electromagnetics Research, Vol. 94, 327-341, 2009.
doi:10.2528/PIER09061205

4. Cobos Sanchez, C., S. G. Garcia, L. D. Angulo, C. M. De Jong Van Coevorden, and A. Rubio Bretones, "A divergence-free BEM method to model quasi-static currents: Application to MRI coil design," Progress In Electromagnetics Research B, Vol. 20, 187-203, 2010.
doi:10.2528/PIERB10011504

5. Mishra, M. and N. Gupta, "Application of quasi monte carlo integration technique in EM scattering from finite cylinders," Progress In Electromagnetics Research Letters, Vol. 9, 109-118, 2009.
doi:10.2528/PIERL09050806

6. Valsan, S. P. and K. S. Swarup, "Wavelet transform based digital protection for transmission lines," International Journal of Electrical Power & Energy Systems, Vol. 31, No. 7-8, 379-388, 2009.
doi:10.1016/j.ijepes.2009.03.024

7. Danesfahani, R., S. Hatamzadeh-Varmazyar, E. Babolian, and Z. Masouri, "Applying shannon wavelet basis functions to the method of moments for evaluating the radar cross section of the conducting and resistive surfaces," Progress In Electromagnetics Research B, Vol. 8, 257-292, 2008.
doi:10.2528/PIERB08062601

8. Huang, C.-W. and K.-C. Lee, "Application of ica technique to PCA based radar target recognition," Progress In Electromagnet ics Research, Vol. 105, 157-170, 2010.
doi:10.2528/PIER10042305

9. Camacho, J., J. Pico, and A. Ferrer, "Corrigendum to `The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?' [Anal. Chim. Acta, Vol. 642, 59-68, 2009],", Vol. 658, No. 1, 106, Analytica Chimica Acta, 2010.

10. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of Svm-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

11. Cocosco, C. A., A. P. Zijdenbos, and A. C. Evans, "A fully automatic and robust brain MRI tissue classification method," Medical Image Analysis, Vol. 7, No. 4, 513-527, 2003.
doi:10.1016/S1361-8415(03)00037-9

12. Yeh, J.-Y. and J. C. Fu, "A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI," Expert Systems with Applications, Vol. 34, No. 2, 1285-1295, 2008.
doi:10.1016/j.eswa.2006.12.012

13. Zhang, Y.-D. and L.Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

14. Coulibaly, P. and N. D. Evora, "Comparison of neural network methods for infilling missing daily weather records," Journal of Hydrology, Vol. 341, No. 1-2, 27-41, 2007.
doi:10.1016/j.jhydrol.2007.04.020

15. Robotham, H., et al. "Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks ," Fisheries Research, Vol. 102, No. 1-2, 115-122, 2010.
doi:10.1016/j.fishres.2009.10.015

16. Kellegöz, T., B. Toklu, and J. Wilson, "Elite guided steady-state genetic algorithm for minimizing total tardiness in flowshops," Computers & Industrial Engineering, Vol. 58, No. 2, 300-306, 2010.
doi:10.1016/j.cie.2009.11.001

17. Kiranyaz, S., et al. "Evolutionary artificial neural networks by multi-dimensional particle swarm optimization," Neural Networks, Vol. 22, No. 10, 1448-1462, 2009.
doi:10.1016/j.neunet.2009.05.013

18. Karaboga, N., A. Kalinli, and D. Karaboga, "Designing digital IIR filters using ant colony optimisation algorithm," Engineering Applications of Artificial Intelligence, Vol. 17, No. 3, 301-309, 2004.
doi:10.1016/j.engappai.2004.02.009

19. Karaboga, D. and B. Basturk, "On the performance of artificial bee colony (ABC) algorithm," Applied Soft Computing, Vol. 8, No. 1, 687-697, 2008.
doi:10.1016/j.asoc.2007.05.007

20. Zhang, S., S.-X. Gong, Y. Guan, P.-F. Zhang, and Q. Gong, "A novel IGA-EDSPSO hybrid algorithm for the synthesis of sparse arrays," Progress In Electromagnetics Research, Vol. 89, 121-134, 2009.
doi:10.2528/PIER08120806

21. Wang, W.-T., S.-X. Gong, Y.-J. Zhang, F.-T. Zha, J. Ling, and T. Wan, "Low RCS dipole array synthesis based on MoM-PSO hybrid algorithm," Progress In Electromagnetics Research, Vol. 94, 119-132, 2009.
doi:10.2528/PIER09060902

22. Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, "Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network," Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
doi:10.1016/j.bspc.2006.05.002

23. El-Dahshan, E.-S. A., T. Hosny, and A.-B. M. Salem, "Hybrid intelligent techniques for MRI brain images classification," Digital Signal Processing, Vol. 20, No. 2, 433-441, 2010.
doi:10.1016/j.dsp.2009.07.002

24. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105

25. Zhang, Y., et al. "Chaotic artificial bee colony used for cluster analysis," Communications in Computer and Information Science, Vol. 134, No. 1, 205-211, 2011.
doi:10.1007/978-3-642-18129-0_33

26. Korsunsky, A. M. and A. Constantinescu, "Work of indentation approach to the analysis of hardness and modulus of thin coatings ," Materials Science and Engineering: A, Vol. 423, No. 1-2, 28-35, 2006.
doi:10.1016/j.msea.2005.09.126

27. Wang, Y., B. Li, and T. Weise, "Estimation of distribution and di®erential evolution cooperation for large scale economic load dispatch optimization of power systems," Information Sciences, Vol. 180, No. 12, 2405-2420, 2010.
doi:10.1016/j.ins.2010.02.015

28. Qiao, S., Z.-G. Shi, T. Jiang, and L.-X. Ran, "A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization," Progress In Electromagnetics Research, Vol. 75, 225-237, 2007.
doi:10.2528/PIER07052403

29. Singh, N. and A. Sinha, "Chaos-based secure communication system using logistic map," Optics and Lasers in Engineering, Vol. 48, No. 3, 398-404, 2010.
doi:10.1016/j.optlaseng.2009.10.001

30. Ludwig, Jr., O., et al. "Applications of information theory, genetic algorithms, and neural models to predict oil flow," Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 7, 2870-2885, 2009.
doi:10.1016/j.cnsns.2008.12.011