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Abstract—Automated and accurate classification of magnetic
resonance (MR) brain images is a hot topic in the field of neuroimaging.
Recently many different and innovative methods have been proposed
to improve upon this technology. In this study, we presented a hybrid
method based on forward neural network (FNN) to classify an MR
brain image as normal or abnormal. The method first employed a
discrete wavelet transform to extract features from images, and then
applied the technique of principle component analysis (PCA) to reduce
the size of the features. The reduced features were sent to an FNN, of
which the parameters were optimized via an improved artificial bee
colony (ABC) algorithm based on both fitness scaling and chaotic
theory. We referred to the improved algorithm as scaled chaotic
artificial bee colony (SCABC). Moreover, the K-fold stratified cross
validation was employed to avoid overfitting. In the experiment, we
applied the proposed method on the data set of T2-weighted MRI
images consisting of 66 brain images (18 normal and 48 abnormal).
The proposed SCABC was compared with traditional training methods
such as BP, momentum BP, genetic algorithm, elite genetic algorithm
with migration, simulated annealing, and ABC. Each algorithm was
run 20 times to reduce randomness. The results show that our SCABC
can obtain the least mean MSE and 100% classification accuracy.

Received 17 March 2011, Accepted 19 April 2011, Scheduled 26 April 2011
Corresponding author: Yudong Zhang (zhangyudongnuaa@gmail.com).



66 Zhang, Wu, and Wang

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a noninvasive medical imaging
technique used in radiology to visualize detailed internal structure
and limited functions of the body [1]. It provides greater contrast
between the different soft tissues of the body than computed
tomography (CT) does, making it especially useful in neurological
(brain), musculoskeletal, cardiovascular, and oncological (cancer)
imaging [2, 3]. The diagnostic values of MRI are greatly magnified
by the automated and accurate classification of the MR images [4, 5].

Wavelet transform is an effective tool for 2D image feature
extraction because it allows for the analysis of images at various levels
of resolution. However, it requires large storage and is computationally
more expensive [6, 7]. In order to reduce the feature vector dimensions
and increase the discriminative power, the principal component
analysis (PCA) [8] method has been used. PCA is appealing since it
effectively reduces the dimensionality of the data and therefore reduces
the computational cost of analyzing new data [9]. After obtaining the
features set, we need to construct a classifier, which presents a challenge
to current researchers.

In recent years, researchers have proposed two categories
of approaches to obtain this goal. The first category is
supervised classification, such as support vector machine (SVM) [10]
and k-nearest neighbors (k-NN) [11]. The other category is
unsupervised classification, such as self-organization feature map
(SOFM) and fuzzy c-means [12]. While both of these methods
achieved satisfactory results, supervised classification performs better
than unsupervised classification in terms of classification accuracy
(successful classification rate).

The forward neural network (FNN) [13] was chosen as the classifier
because it is a powerful tool among supervised classifiers and it can
classify nonlinear separable patterns and approximate an arbitrary
continuous function [14]. However, to find the optimal parameters
of FNN is a difficult task because the search algorithms are easily
trapped in local extrema. Recently, there have been many algorithms
available to train the FNN, such as back-propagation (BP) algorithm,
genetic algorithm (GA) [15], elite genetic algorithm with migration
(EGAM) [16], simulating annealing (SA) algorithm, and particle
swarm optimization (PSO) [17]. Unfortunately, the BP, GA, SA, PSO
algorithms all demand expensive computational costs, and can still
be easily trapped into the local best, hence would probably end up
without finding the optimal weights of the FNN. In this paper, we use
the ABC algorithm to find its optimal weights.
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Artificial Bee Colony (ABC) algorithm was originally presented
by Karaboga et al. [18] under the inspiration of collective behavior on
honey bees with better performance in function optimization problems
compared with GA, differential evolution (DE), and particle swarm
optimization (PSO) [19]. As is known, normal global optimization
techniques conduct only one search operation in one iteration. For
example, the PSO carries out a global search at the beginning stage
and local search in the ending stage [20, 21], nevertheless, the ABC
features in the following advantage in that it conducts both a global
search and local search in each iteration, and as a result the probability
of finding the optimal is significantly increased, which effectively avoids
local optima to a large extent.

However, ABC suffers from following shortcomings: 1) it is easy to
be trapped into local minima; 2) and it costs a long time to converge.
In order to improve the performance of ABC, we propose a scaled
chaotic ABC (SCABC) method based on fitness scaling strategy and
chaotic theory to find the optimal parameters of FNN.

The structure of the rest of this paper was organized as follows:
Section 2 gives the methodology of this method, including DWT, PCA,
K-fold cross validation, and FNN. Section 3 proposes the SCABC
algorithm. Experiments in Section 4 demonstrate the effectiveness
and rapidness of our proposed SCABC algorithm based on public brain
MRI dataset. Finally, Section 5 is devoted to the conclusions.

2. METHODOLOGY

In total, our approach consisted of five stages shown in Figure 1: 1) use
DWT to extract features; 2) use PCA to reduce features size; 3) use
K-fold stratified cross validation to prevent overfitting; 4) use FNN to
construct the classifier; 5) use SCABC to train the FNN.

Brain

MRIs
DWT PCA FNN

K-Fold Stratified 

Cross Validation

SCABC

Classifier

Figure 1. Methodology of our proposed algorithm.

2.1. Discrete Wavelet Transform

The first advantage of using Wavelet Transform (WT) is that it
can preserve both the time and frequency information of the signal.
Another advantage of WT is that it adopts “scale” instead of
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traditional “frequency” as it does not produce a time-frequency view
but a time-scale view of the signal. The time-scale view is a more
natural and powerful way to view data. Using DWT as the feature
extraction for brain image classification can be found in Refs. [22–24].

2.2. Feature Reduction

PCA is an efficient tool to reduce the dimension of a data set consisting
of a large number of interrelated variables while retaining the most
significant variations. It is achieved by transforming the data set to a
new set of ordered variables according to their degree of variance or
importance. This technique has three effects: (i) it orthogonalizes the
components of the input vectors so that they are uncorrelated with
each other, (ii) it orders the resulting orthogonal components so that
those with the largest variation come first, and (iii) it eliminates the
components in the data set that contributing the least variation.

For a 256-by-256 size T2-weighted MR Image, its dimension is
256 ∗ 256 = 65535; after a three level DWT decomposition, the
dimension of the wavelet coefficients is 32 ∗ 32 = 1024. Therefore, it is
still a high computation cost if we directly submit the 1024 dimensional
data to classifier. In this paper, we used PCA to reduce the 1024
dimensional data to only 19 principal components.

2.3. Stratified K-fold Cross Validation

One of the problems that occurs during the classifier training is
overfitting, where the error on the training set is driven to a very
small value, but when new data is presented to the network the error
is large. Therefore, cross validation is employed to avoid overfitting. In
this paper the K-fold cross validation is applied due to its properties
as simple, easy, and using all data for training and validation. The
mechanism is to create a K-fold partition of the whole dataset, repeat
K times to use K-1 folds for training and a left fold for validation, and
finally average the error rates of K experiments.

2.4. Feedforward Neural Network

Neural networks are widely used in pattern classification since they do
not need any information about the probability distribution and the
a priori probabilities of different classes. The training vectors were
presented to the FNN, which is trained in batch mode. The network
configuration is supposed as NI ×NH ×NO, i.e., a two-layer network
with NI input neurons, NH neurons in the hidden layer, and NO output
indicating the brain is normal or abnormal.
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3. SCALED CHAOTIC ABC

The ABC has proven to perform better than GA, DE and PSO [19]
with respect of several standard test functions. Its detailed procedures
can be found in Refs. [19, 25]. However, there is no reference
discussing the performance of ABC used in FNN. Actually, in the
following experimental section we found ABC performs not well for
the weights/biases optimization of the FNN. Therefore, we can make
further improvements from the following two aspects. The first is to use
the fitness scaling strategy; the second is to employ chaotic operator
to take place for a random number generator.

3.1. Power-rank Fitness Scaling

Fitness scaling converts the raw fitness scores that are returned by the
fitness function to values in a range that is suitable for the selection
function. The selection function uses the scaled fitness values to select
the bees of the next generation. The selection function assigns a higher
probability of selection to bees with higher scaled values.

There exist bundles of fitness scaling methods. The most common
scaling techniques are linear scaling, rank scaling, power scaling, top
scaling, etc. Among those fitness scaling methods, power scaling finds
a solution nearly the most quickly due to improvement of diversity,
but it suffers from instability [26]. Meanwhile, rank scaling shows
stability on different types of tests [27]. Therefore, a new power-rank
scaling method was proposed combing both power and rank strategies
as follows

fiti =
rk
i∑N

i=1 rk
i

(1)

where ri is the rank of ith individual bee, N is the number of
population. Our strategy contains a three-step process. First, all
bees are sorted to obtain the corresponding ranks. Second, powers
are computed for exponential values k. Third, the scaled values are
normalized by dividing the sum of the scaled values over the entire
population.

3.2. Chaotic Operator

The chaotic theory pointed out that minute changes in initial
conditions steered subsequent simulations towards radically different
final results, rendering long-term prediction impossible in general [28].
Sensitive dependence on initial conditions is not only observed in
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Figure 2. Performances of logistic equation: (a) x0 = 0.12345678; (b)
x0 = 0.12345679; (c) x0 = 0.25; (d) x0 = 0.5; (e) x0 = 0.75.

complex systems, but even in the simplest logistic equation. In the
well-known logistic equation [29]:

xn+1 = 4× xn × (1− xn) (2)
where x0 ∈ (0, 1) and x0 /∈ {0.25, 0.5, 0.75}. A very small difference in
the initial value of x would give rise to a large difference in its long-time
behavior as shown in Figures 2(a)–(b). The track of chaotic variable xn

can travel ergodically over the whole space of interest. Figures 2(c)–(e)
indicates that the series xn will lose chaotic property at the points of
0.25, 0.5, and 0.75.

In standard ABC, some random parameters are generated by
pseudo-random number generators, which cannot ensure the ergodicity
in parameter space because they are pseudo-random. Therefore,
chaotic number generator based on formula (2) can force the random
parameters nearly absolute random. The detailed procedures of
embedding fitness scaling and chaotic operator are listed below.

3.3. Procedures of SCABC

Step 1 Initialize the population of solutions xij (here i denotes the ith
solution, and j denotes the jth epoch, i = 1, . . ., SN , here SN
denotes the number of solutions) with j = 0

xi0 = LB + rand(·)× (UB − LB)(i = 1, . . . , SN) (3)
here LB & UB represents the lower and upper bounds, which can
be infinity if not specified. Then, evaluate the population via the
specified optimization function;
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Step 2 Repeat and let j = j + 1;
Step 3 Produce new solutions (food source positions) υij in the

neighborhood of xij for the employed bees using the formula

υij = xij + Φij(xij − xkj) (4)

Here k is a solution in the neighborhood of i, Φij is a chaotic
random number in the range [−1, 1] calculated by Equation (2).
Evaluate the new solutions;

Step 4 Apply the greedy selection process between xij and υij ;
Step 5 Calculate the probability values Pij for the solutions xij by

means of their fitness values using the equation

Pij =
fitij∑SN
i=1 fitij

(5)

Here fit denotes the scaled fitness as shown in Equation (1);
Step 6 Normalize Pij values into [0, 1];
Step 7 Produce the new solutions (new positions) υij for the onlookers

from the solutions xij as Step 3, selected depending on Pij , and
evaluate them;

Step 8 Apply the greedy selection process for the onlookers between
xij and υij ;

Step 9 Determine the abandoned solution (source), if exists, and
replace it with a new randomly produced solution xi for the scout
using the equation

xij = min
i

(xij) + ϕij ∗
(

max
i

(xij)−min
i

(xij)
)

(6)

Here ϕij is a chaotic random number in [0, 1] calculated by
Equation (2).

Step 10 Memorize the best food source position (solution) achieved so
far;

Step 11 Go to Step 2 until termination criteria met.

4. EXPERIMENTS AND DISCUSSIONS

The experiments were carried out on the P4 IBM platform with 3 GHz
main frequency and 2 GB memory running under the Windows XP
operating system. The algorithm was developed on Matlab 2010b.
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4.1. Database

The datasets consists of 66 T2-weighted MR brain images in axial plane
and 256 × 256 in-plane resolution, which were downloaded from the
Harvard Medical School website (http://med.harvard.edu/AANLIB/).
The setting of the training images and validation images is shown in
Table 1 due to the stratified 6-fold cross validation. Therefore, we ran
6 trials with each 55 (15 normal and 40 abnormal) are used for training
and the left 11 (3 normal and 8 abnormal) are used for test.

Table 1. Setting of stratified 6-fold cross validation.

Total No.
of images

No. of images in
training area (55)

No. of images in
testing area (11)

Normal Abnormal Normal Abnormal
66 15 40 3 8

The abnormal brain MR images consist of the following diseases:
glioma, meningioma, Alzheimer’s disease, Alzheimer’s disease plus
visual agnosia, Pick’s disease, sarcoma, and Huntington’s disease. A
sample of each is shown in Figure 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Sample of brain MRIs: (a) Normal brain; (b) glioma;
(c) meningioma; (d) Alzheimer’s disease; (e) Alzheimer’s disease with
visual agnosia; (f) Pick’s disease; (g) sarcoma; (h) Huntington’s
disease.
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4.2. Algorithm Comparison

After DWT and PCA processing, there are 19 principle components
remaining, which were directly sent to the FNN. Thus, the NI is 19
and the NH is determined as 10 according to the information entropy
method [30]. Consequently, the structure of the neural network is 19-
10-1.

We compare the proposed SCABC algorithm with BP, momentum
BP (MBP), genetic algorithm (GA), elite genetic algorithm with
migration (EGAM), simulated annealing (SA), and artificial bee colony
(ABC). The parameters of GA, EGAM, SA, ABC, and SCABC are
obtained using a trial-and-error method and listed in Table 2.

Table 2. Parameters of GA, EGAM, SA, ABC and SCABC.

GA EGAM SA ABC/SCABC

Parameters Values Parameters Values Parameters Values Parameters Values

SN 20 SN 20 SN 20 SN 20

MaxEpoch 400 MaxEpoch 400 MaxEpoch 400 MaxEpoch 400

PCrossover 0.8 PCrossover 0.8 TI 100 FN 10

Pmutation 0.1 Pmutation 0.1 TF 0

Pelite 0.1

Pmigration 0.2

A typical convergence curve is shown in Figure 4(a). Furthermore,
the distribution of MSE of 20 runs is shown in Figure 4(b). It indicates
that the proposed SCABC performs best with the least mean MSE of
1.67× 10−4, the EGAM is the second best algorithm with mean MSE
of 9.72 × 10−4, GA is the third best of 1.5 × 10−3, and ABC ranks
fourth of 2.0× 10−3. The detailed data is shown in Table 3.

The BP and MBP does not work well in the MR brain image
classification problems because BP/MBP algorithms are designed for
the least squares problems that are approximately linear. However,
the output neurons in pattern recognition problems are generally
saturated. Therefore, global optimization algorithms show more
powerful capability in pattern recognition problems. The SA doesn’t
find the satisfying weights of FNN due to its requirement of large
iterative epochs (here we only give each algorithm 400 epochs to
converge). Other global optimization methods such as GA, EGAM,
ABC, and SCABC all find enough small MSE, moreover, the proposed
SCABC can find the least MSE of 20 runs.
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Figure 4. Training performance: (a) A typical convergence curve; (b)
statistical distribution of MSE on 20 runs.

Table 3. Mean and variance of MSE on 20 runs.

Algorithm Mean MSE Std Var of MSE Rank

BP 0.2304 0.0436 7

MBP 0.1765 0.0232 6

GA 1.5× 10−3 0.0010 3

EGAM 9.72× 10−4 0.0005 2

SA 0.1291 0.0564 5

ABC 2.0× 10−3 0.0008 4

SCABC 1.67× 10−4 0.0001 1

4.3. Classification Accuracy

The confusion matrix of SCABC on the dataset using stratified 6-fold
cross validation is shown in Figure 5. It indicates that the classifier
achieves 100% classification accuracy. Moreover, we compared our
results with other approaches (DWT + SOM [22], DWT + SVM
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Figure 5. Confusion matrix of the SCABC method.

Table 4. Classification accuracy comparison for the same MRI
dataset.

Approach Classification Accuracy (%)

DWT + SOM [22] 94

DWT + SVM with linear kernel [22] 96

DWT + SVM with radial basis

function based kernel [22]
98

DWT + PCA + ANN [23] 97

DWT + PCA + kNN [23] 98

DWT + PCA + ACPSO − FNN [24] 98.75%

DWT + PCA + SCABC − FNN (Our method) 100%

with linear kernel [22], DWT + SVM with radial basis function based
kernel [22], DWT + PCA + ANN [23], DWT + PCA + kNN [23],
DWT + PCA + ACPSO − FNN [24]) described in the recent literature
that used the same MRI datasets. The results are shown in Table 4,
where DWT denotes discrete wavelet transform, SOM denotes self-
organizing map, SVM denotes support vector machine, PCA denotes
principle component analysis, ANN denotes artificial neural network,
kNN denotes k nearest neighbors algorithm, FNN denotes forward
neural network, and ACPSO denotes adaptive chaotic particle swarm
optimization. Table 4 indicates that the proposed method had the
highest classification accuracy.
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5. CONCLUSIONS

In this study we had developed a novel SCABC-FNN classifier to
distinguish between normal and abnormal MRIs of the brain. The
method obtained 100% classification accuracy on the T2-weighted
brain MRI image datasets.

Although the standard ABC is proven better than GA, DE,
and PSO in other publications, however the ABC performs worse in
the application of training the FNN. Therefore, the performance of
different optimization algorithm is dependent on applications.

Future work should focus on the following aspects: 1) the
proposed method could be employed for MR images with other
contrast mechanisms such as T1-weighted, proton-density-weighted,
diffusion-weighted images, and functional MRIs; 2) the features may
be improved by using advanced wavelet transforms such as the lift-
up wavelet; 3) brain images in sagittal plane or coronal plane can be
tested, which needs to redesign and retrain the FNN; 4) 3D brain
images are extremely high dimensional, we will test other advanced
feature reduction methods; 5) Multi-classification, which focuses on
specific brain MRIs disorders, can also be explored; 6) the SCABC can
be applied to various industrial fields.
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