Vol. 23
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-04-29
The Support Vector Machine for Dielectric Target Detection through a Wall
By
Progress In Electromagnetics Research Letters, Vol. 23, 119-128, 2011
Abstract
In this paper, a novel approach based on the support vector machine (SVM) for dielectric target detection in through-wall scenario is proposed. Through-wall detection is converted to the establishment and use of a mapping between backscattered data and the dielectric parameter of the target. Then the propagation effects caused by walls, such as refraction and speed change, are included in the mapping that can be regressed after SVM training process. The training and testing data for the SVM is obtained by finite-difference time-domain (FDTD) simulation. Numerical experiments show that once the training phase is completed, this technique only needs computational time in an order of seconds to predict the parameters. Besides, experimental results show that good consistency between the actual parameters and estimated ones is achieved. Through-wall target tracking is also discussed and the results are acceptable.
Citation
Fang-Fang Wang, and Ye-Rong Zhang, "The Support Vector Machine for Dielectric Target Detection through a Wall," Progress In Electromagnetics Research Letters, Vol. 23, 119-128, 2011.
doi:10.2528/PIERL11031106
References

1. Ferris, D. D. and N. C. Currie, "Survey of current technologies for through-the-wall surveillance (TWS)," Proceedings of SPIE, 1999.

2. Baranoski, E. J., "Through-wall imaging: Historical perspective and future directions," Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 345, 556-569, 2008.
doi:10.1016/j.jfranklin.2008.01.005

3. Ahmad, F., G. J. Frazer, S. A. Kassam, and M. G. Amin, "Design and implementation of near-field, wideband synthetic aperture beamformers," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, 206-220, 2004.
doi:10.1109/TAES.2004.1292154

4. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, 271-283, 2005.
doi:10.1109/TAES.2005.1413761

5. Wang, G. Y. and M. G. Amin, "Imaging through unknown walls using different standoff distances," IEEE Transactions on Signal Processing, Vol. 54, 4015-4025, 2006.
doi:10.1109/TSP.2006.879325

6. Ahmad, F., M. G. Amin, and G. Mandapati, "Autofocusing of through-the-wall radar imagery under unknown wall characteristics," IEEE Transactions on Image Processing, Vol. 16, 1785-1795, 2007.
doi:10.1109/TIP.2007.899030

7. Soldovieri, F. and R. Solimene, "Through-wall imaging via a linear inverse scattering algorithm," IEEE Geoscience and Remote Sensing Letters, Vol. 4, 513-517, 2007.
doi:10.1109/LGRS.2007.900735

8. Song, L. P., C. Yu, and Q. H. Liu, "Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses," IEEETransactions on Geoscience and Remote Sensing, Vol. 43, 2793-2798, 2005.
doi:10.1109/TGRS.2005.857914

9. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, 1589-1599, 2008.
doi:10.1109/TGRS.2008.916212

10. Li, L. L., W. J. Zhang, and F. Li, "A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, 423-431, 2010.
doi:10.1109/TGRS.2009.2024686

11. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408

12. Bermani, E., A. Boni, S. Caorsi, and A. Massa, "An innovative real-time technique for buried object detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, 927-931, 2003.
doi:10.1109/TGRS.2003.810928

13. Bermani, E., A. Boni, S. Caorsi, M. Donelli, and A. Massa, "A multi-source strategy based on a learning-by-examples technique for buried object detection," Progress In Electromagnetics Research, Vol. 48, 185-200, 2004.
doi:10.2528/PIER03110701

14. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

15. Zhang, Q. H., B. X. Xiao, and G. Q. Zhu, "Inverse scattering by dielectric circular cylinder using support vector machine approach," Microwave and Optical Technology Letters, Vol. 49, 372-375, 2007.
doi:10.1002/mop.22131

16. Vapnik, V. N., The Nature of Statistical Learning Theory, Springer Verlag, 2000.

17. Smola, A. J. and B. Scholkopf, "A tutorial on support vector regression," Statistics and Computing, Vol. 14, 199-222, 2004.
doi:10.1023/B:STCO.0000035301.49549.88

18. Kim, Y. and H. Ling, "Through-wall human tracking with multiple Doppler sensors using an artificial neural network," IEEE Transactions on Antennas and Propagation, Vol. 57, 2116-2122, 2009.
doi:10.1109/TAP.2009.2021871

19. Du, K. L., M. N. S. Swamy, and I. Ebrary, Neural Networks in a Softcomputing Framework, Springer, 2006.

20. Massa, A., A. Boni, and M. Donelli, "A classification approach based on SVM for electromagnetic subsurface sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, 2084-2093, 2005.
doi:10.1109/TGRS.2005.853186