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Abstract—In this paper, a novel approach based on the support
vector machine (SVM) for dielectric target detection in through-wall
scenario is proposed. Through-wall detection is converted to the
establishment and use of a mapping between backscattered data and
the dielectric parameter of the target. Then the propagation effects
caused by walls, such as refraction and speed change, are included in
the mapping that can be regressed after SVM training process. The
training and testing data for the SVM is obtained by finite-difference
time-domain (FDTD) simulation. Numerical experiments show that
once the training phase is completed, this technique only needs
computational time in an order of seconds to predict the parameters.
Besides, experimental results show that good consistency between the
actual parameters and estimated ones is achieved. Through-wall target
tracking is also discussed and the results are acceptable.

1. INTRODUCTION

Sensing through obstacles, such as walls, doors, and other visually
opaque materials using microwave signals, is emerging as a powerful
tool which supports a range of civilian and military applications [1, 2].
Through-the-wall radar imaging (TWRI) has been recently sought out
for surveillance and reconnaissance in urban environments, which can
be employed to detect and locate survivors for the succors in search
and rescue in natural disasters, such as earthquakes and avalanches.

In through-wall applications, it is necessary to determine the
shape, location and physical properties of the target located at the
other side of a wall in order to track their motion, based on the
knowledge about the scattered field from the target. The propagation
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effects of walls are not incorporation into the conventional imaging
technology such as synthetic aperture radar (SAR) techniques [2].
Ahmad et al. and Wang and Amin [3–6] proposed a geometric
method in which the refraction path is obtained using Snell theorem.
Then the approach compensates this effect in an imaging algorithm
with wideband synthetic beamforming. Although this technique is
successful for the target location estimation in through-the-wall radar
imaging applications, the multiple interactions between walls and the
target or between wall’s surfaces are not taken into consideration,
which typically occur in through-wall imaging (TWI) scenarios.
Besides, only the location of the target can be detected with this
method. Therefore, some numerical methods [7–11], by use of
the differences in dielectric properties between the target and the
surrounding environments, are applied to TWI for more accurate
results. Among these approaches, the presence of walls is implicitly
taken into account through the Green’s function. Generally, these
existing numerical algorithms for target identification can be divided
into two kinds: one is based on the linear approximation such
as Born approximation [7], and the other is based on the use of
nonlinear optimization [8]. The former is only suitable for the weak
scattering target, and the latter is often trapped into local minima,
computationally expensive, and time consuming.

Integral equation (IE)-based modeling technique is usually
employed in through-wall problem. The relationship between the
scattered field and dielectric properties of the target are nonlinear
according to the integral equation, which is difficult to be explicitly
revealed in those existing numerical method based on integral
equation (IE)-based modeling technique. In this paper, through-wall
detection is converted to the establishment and use of a mapping
between backscattered data and the dielectric parameter of the target.
Providing the dielectric parameters of a target are given, the scattered
field can be collected through finite-difference time-domain (FDTD)
simulation. A pair which consists of one dielectric parameter and
scattered field of the target is called training data (i.e., input-output
measurement). Therefore, through-wall detection problem can be
recast into a regression one with these training data. This technique is
called learning-from-samples (LFS) technique. In this way, the effects
caused by walls can be included in the mapping obtained after the
training phase. Based on the mapping, the dielectric parameters of
the target can be predicted from the backscattered field.

In this paper, we detect target through a wall with the support
vector machine (SVM). SVM is one of the LFS techniques. SVM
was originally designed for binary classification. Recently, it has been



Progress In Electromagnetics Research Letters, Vol. 23, 2011 121

used for solving inverse problems extensively [12–15], which can be
reformulated into regression ones [16, 17]. The SVM allows to obtain
reconstruction results in quasi real time, with a percentage of time
saved with respect to iterative methods greater than 90% [12]. In
contrast to the conventional artificial neural networks (NN) [18, 19],
SVM have a strong theoretical foundation (statistical learning theory)
with well-defined generalization property and do not suffer from the
curse of dimensionality. Moreover, another advantage of SVM is that
unlike optimization problems arising from NN training, constrained
quadratic optimization problem (CQP) in SVM has a unique solution,
and hence does not suffer from local minima. Simulation results show
that it is effective to estimate dielectric properties of the target in
through-wall problem using SVM. In addition, the detection of the
dielectric target moving along a circular orbit is simulated, and the
predicted track is approximately consistent with the actual orbit.

This paper is organized as follows. In Section 2, the physical
model of the problem is presented. In Section 3, the theory of SVM is
introduced based on the model obtained in the above section. Section 4
assesses the performance of the proposed through-wall technique and
experimental results are given. Finally, some conclusions and final
remarks are provided.

2. PHYSICAL MODELLING

Let us consider a dielectric target inside a room. The room
is illuminated by a transmitter TX emitting monochromatic
electromagnetic wave; and the scattered field is collected by a receiver
RX; both the transmitter and receiver are located at the same side of
the walls.

As illustrated in Fig. 1, a state vector y represents the indoor
target. Sensors (defined by a sensor state vector p) collect the data
vector x corresponding to the relevant information of the vector y.
In this paper, background subtraction is used to remove the wall
reflection. Therefore, the vector x is the scattered filed from the
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Figure 1. Physical model.
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target. The relationship between vectors x and y can be expressed
as a parameterized transfer function H

x = H(p,y) (1)

We attempt to find an approximate inverse transfer function G(p)

y = G(p,x) (2)

The through-wall problem is nonlinear and ill-posed. Generally, the
approximate inverse G(p)is not unique. Consequently, we recast the
TWI problem into a regression one, providing the training dataset is
given (xi,yi, i = 1, 2, 3, . . . , l), where

xi = (Ers|ts, rs = 1, 2, 3, . . . , R, ts = 1, 2, 3, . . . , T )
yi = (x0, y0, ρ, εr, σ)

The target is centered at (x0, y0) with a diameter of ρ, and the
conductivity and dielectric permittivity of scatterers are characterized
by σ, εr respectively. Ers|ts represents the scattered electric field
measured at the rth receiving position (xrs, yrs) illuminated by the
transmitter TX located at (xtr, ytr). Once the mapping from x to y is
established, we can predict the vector y from the data vector x, which
is collected by receivers.

3. SUPPORT VECTOR REGRESSION

The training dataset {(x1, y1), . . . , (xl, yl)} ⊂ RN × R is given, where
RN denotes the space of the input patterns; xi represents the scattered
field due to the target, and yi represents parameters of the scatterer
such as position, shape, and the electromagnetic characteristic (i.e., y
is an element of the vector y).

Since the SVM can only predict one parameter at one time, the
dielectric parameters such as relative permittivity and conductivity
have their own mapping to the scattered data. Here we take xn =
(Ers|ts)n, yn = (εr)n as an example. We begin with describing the case
of linear function f , which takes the form

y=G(p,x)=f(x)=〈w,x〉+b=w·x+b with w∈RN , b∈R (3)

where 〈·, ·〉 denotes the dot product in RN , w and b are parameters
obtained by minimizing the regression risk subject to some constrains.
In the ε-SV regression, our goal is to find a function that has at most a
deviation of ε from the actually obtained targets yi for all the training
data, and that is as flat as possible (ε is a constant number set in
advance). The slack variables ξi and ξ∗i are introduced for infeasible
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constraints for some acceptable errors. Therefore, the problem can be
treated as an optimization issue as follows

min 1
2‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

s.t.

{
yi − 〈w,xi〉 − b ≤ ε + ξi

〈w,xi〉+ b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(4)

The constant C > 0 determines the trade-off between the flatness of
f and the amount up to which deviation larger than ε is tolerated. If
the differences between the actual and estimated values are larger than
ε, the errors are the differences, otherwise the errors will be ignored.
This corresponds to a so-called ε-insensitive loss function c(f(x) − y)
described by

c(f(x)− y) =
{

0 if |f(x)− y| ≤ ε
|f(x)− y| − ε otherwise (5)

Since the relationship between the scattered field and parameters
of the target is nonlinear, it can be achieved by preprocessing the
training pattern xi via a transformation into some feature space F
in which there are linear relation between scattered field and the
parameter of the target:

Φ : RN → F

x → Φ(x)
The SVM algorithm depends on dot products between patterns xi,
so only the information of kernel function k(x,x′) = 〈Φ(x), Φ(x′)〉,
rather than that of Φ explicitly, is regarded for the simplification of the
algorithm. To solve this optimization problem, we usually transform
the primal problem to its dual one described as follows

maximize





−1
2

l∑
i,j=1

(αi − α∗i )(αj − α∗j )k(xi,xj)

−ε
l∑

i=1
(αi + α∗i ) +

l∑
i=1

yi(αi − α∗i )

subject to
l∑

i=1
(αi − α∗i ) = 0 and αi, α

∗
i ∈ [0, C]

(6)

where Lagrange multipliers α and α∗ are computed by solving the
constrained quadratic programming problem (CQP). The function f

is approximately given by f̃ :

f̃(x) =
Nsv∑

n=1

(αn − α∗n)k(xn,x) + b (7)
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where xn is a training pattern whose corresponding Lagrange multiplier
is nonzero, such training patterns are called support vectors (SVs) and
Nsv is the number of SVs. The process of establishing the mapping for
the conductivity is the same as the one for relative permittivity.

4. EXPERIMENTAL RESULTS

In SVM regression, the kernel function is selected as the Gaussian
kernel, which is given by

k(xi,xj) = exp(−γ ‖xi − xj‖2) (8)
where γ is the variance of the kernel function which is determined using
cross-validation in the training phase. The training and testing data
for SVM is generated using FDTD simulation. The total dataset is
achieved by repeated simulations with shift of the dielectric parameters
such as relative permittivity and conductivity as follows

εr = 1.5 + 0.25 ∗m, m = 0, 1, . . . , 14,

σ = 10 ∧ (−3 + 0.05 ∗m), m = 0, 1, 2, . . . , 20
Then we randomly pick up 265 examples to get the training dataset
and choose other examples as the testing dataset.

In this section, the direct electromagnetic scattering problem,
which is exploited to collect data for SVM-based experimentation, is
formulated. Fig. 2 shows the general scenario of an arbitrary dielectric
scatterer residing in a simple room. The thickness of walls is 0.2 m.
The investigation domain is D = [−1.08, 1.08] × [0.25, 3.64]m2. The
conductivity σ and relative permittivity εr of the walls are set as a
standard value of 0.01 S/m and 8, respectively.
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Figure 2. Room geometry.
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The inside and outside regions of a room (i.e., walls are excluded)
are free spaces with dielectric permittivity and magnetic permeability
denoted by ε0 and µ0. The geometry of the room is discretized
with the FDTD square cells of 1 cm length. The time resolution
is 19.25 × 10−12 s. The transmitting antenna (TX) is fixed in the
position of (0, 0) which is 0.05 m away from the front wall. The
receiving antenna (RX) is 0.04 m away from the same side of the
wall, which moves and synthesizes a measurement aperture L = 2.4 m.
The positions of receiving antenna (RX) are distributed along the x-
direction with coordinate x1 = −1.2m, x2 = −1.18m, . . . , x121 =
1.2m. To model the EM illumination of the modeled room and objects
in it with an UWB short pulse, the transmitter dipole antenna is feed
by a 4.5 ns Gaussian pulse modulated by a 0.5GHz sine wave.

In order to assess the effectiveness of the proposed approach,
numerical simulations have been performed. Fig. 3 displays the
relationship between the actual and estimated dielectric properties
including relative permittivity and conductivity of the target. All
the circular marks in Fig. 3 are situated near the line y = x; SVM
can predict the dielectric parameters with small errors in through-wall
detection. The training time is 1422–1423 seconds. Once the training
phase is completed, the proposed method requires only 9–10 seconds to
predict the dielectric parameters. Moreover, the computation memory
is 140512 KB. We also simulate a target to move along a circular orbit
with the center at (1.0, 0) m and a radius of 0.5 m. The actual and
estimated tracks are plotted in Fig. 4, the predicted track coincides
with the actual one pretty well.

(a) (b)

Figure 3. Predicted values of (a) relative permittivity and (b)
conductivity of the target and the actual ones.
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Figure 4. Actual track versus the estimated one.

Table 1. Error analysis for dielectric properties and tacking positions.

Average Minimum Maximum

ςεr 0.0019 2.9215e–05 0.0055

ςσ 0.1106 0.0027 0.4397

ςx0
0.0251 7.4937e–05 0.1159

ςy0
0.0370 6.5644e–05 0.2225

We use the relative errors of relative permittivity, conductivity,
and position coordinate values

ςεr =
|εract − εrpre|

εract
, ςσ =

|σact − σpre|
σact

(9)

ςx0 =
|x0act − x0pre|

x0act
, ςy0 =

|y0act − y0pre|
y0act

(10)

to quantitatively evaluate the detection accuracy. Where the variables
with subscript act are the actual values and those with subscript pre
are the predicted ones. The minimum, maximum and average errors
are listed in Table 1. From these statistical data, SVM for the detection
of dielectric target in through-wall scenario demonstrates high fidelity.

5. CONCLUSION

A novel approach based on the SVM for dielectric target detection in
through-wall problem is proposed. Good consistency between actual
and estimated dielectric parameters makes this approach superior to
other detection methods for through-wall dielectric target. Through-
wall target tracking based on SVM is also discussed, and the results are
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acceptable with some small deviation from the true track. The SVM
regression-based approach turns out to be effective for the detection of
a single target, whereas they are not so suitable for the case of multiple
targets. Since a classification approach can be used to detect multiple
targets [20], a SVM classification-based technique for multiple targets
detection in through-wall problem will be investigated. Background
subtraction is employed to eliminate the reflection of the walls in this
paper. However, this method can only compute the scattered field
roughly. Besides, the method needs to know the information of the
walls. So through-wall detection under unknown wall characteristics
with SVM will be studied in the future work.
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