Vol. 116
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-04
Prediction of the Electromagnetic Field in Metallic Enclosures Using Artificial Neural Networks
By
Progress In Electromagnetics Research, Vol. 116, 171-184, 2011
Abstract
In complex electromagnetic (EM) environment, EM field distribution inside a metallic enclosure is determined by the external EM radiation and emissions from internal contents. In the design of an electronic system, we usually need to estimate the EM field level in a concerned region inside the enclosure under various EM environments. In this paper, we use artificial neural network (ANN), rather than full wave analysis, combined with the numbered measurements to predict the EM field in the concerned region inside a metallic enclosure. To verify this method, a rectangular metallic enclosure with a printed circuit board (PCB) is illuminated by external incident wave. The measured electric fields inside the enclosure combined with ANN model based on back propagation (BP) training algorithm are used to estimate the values of electric field. The calculation is fast and predictions reveal good agreement with the measurements that validate this method.
Citation
Ming Luo, and Ka-Ma Huang, "Prediction of the Electromagnetic Field in Metallic Enclosures Using Artificial Neural Networks," Progress In Electromagnetics Research, Vol. 116, 171-184, 2011.
doi:10.2528/PIER11031101
References

1. Xie, H., J. Wang, R. Fan, and Y. Liu, "Spice models for radiated and conducted susceptibility analyses of multiconductor shielded cables," Progress In Electromagnetics Research, Vol. 103, 241-257, 2010.
doi:10.2528/PIER10020506

2. Faghihi, F. and H. Heydari, "Reduction of leakage magnetic field in electromagnetic systems based on active shielding concept verified by eigenvalue analysis," Progress In Electromagnetics Research, Vol. 96, 217-236, 2009.
doi:10.2528/PIER09080506

3. Bahadorzadeh, M. and M. N. Moghaddasi, "Improving the shielding effectiveness of a rectangular metallic enclosure with aperture by using extra shielding wall," Progress In Electromagnetics Research Letters, Vol. 1, 45-50, 2008.
doi:10.2528/PIERL07110706

4. Ghafoorzadeh, A. and K. Forooraghi, "Analysis of an inclined semi-circular slot in the narrow wall of a rectangular waveguide," Progress In Electromagnetics Research, Vol. 90, 323-339, 2009.
doi:10.2528/PIER09012002

5. Ahmed, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated PEMC circular cylinder," Progress In Electromagnetics Research, Vol. 92, 91-102, 2009.
doi:10.2528/PIER09030503

6. D'Amore, M. and M. S. Sarto, "Theoretical and experimental characterization of the EMP-interaction with composite-metallic enclosures," IEEE Trans. Electromagn. Compat., Vol. 42, 152-163, May 2000.
doi:10.1109/15.852409

7. Cerri, G., R. de Leo, and V. M. Primiani, "Theoretical and experimental evaluation of the electromagnetic radiation from apertures in shielded enclosures ," IEEE Trans. Electromagn. Compat., Vol. 34, 423-432, Nov. 1992.
doi:10.1109/15.179275

8. Lei, J. Z., C. H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 82-112, 2007.
doi:10.2528/PIER07041905

9. Swillam, M. A., R. H. Gohary, M. H. Bakr, and X. Li, "Efficient approach for sensitivity analysis of lossy and leaky structures using FDTD," Progress In Electromagnetics Research, Vol. 94, 197-212, 2009.
doi:10.2528/PIER09061708

10. Li, M., J. Noebel, J. L. Drewniak, R. E. DuBroffT. H. Hubing, and T. P. van Doren, "EMI from cavity modes of shielding enclosures-FDTD modeling and measurements," IEEE Trans. Electromagn. Compat., Vol. 42, 29-38, Feb. 2000.
doi:10.1109/15.831702

11. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "Gpu accelerated unconditionally stable crank-nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

12. Carpes, Jr., W. P., L. Pichon, and A. Razek, "Analysis of the coupling of an incident wave with a wire inside a cavity using an FEM in frequency and time domains," IEEE Trans. Electromagnetic Compatibility, Vol. 44, No. 3, 470-475, Aug. 2002.
doi:10.1109/TEMC.2002.801767

13. Carpes Jr., W. P., L. Pichon, and A. Razek, "A 3D FEM model for EMC analysis: Coupling of an EM wave with a wire inside a cavity," Proc. Int. Symp. Elecromagnetic Fields in Electrical Engineering (ISEF'99), 57-60, Pavia, Italy, Sep. 1999.

14. Benhassine, S., L. Pinchon, and W. Tabbara, "An efficient finite-element time-domain method for the analysis of the coupling between wave and shielded enclosure," IEEE Trans. Magn., Vol. 38, No. 2, 709-712, Mar. 2002.
doi:10.1109/20.996184

15. Ebadi, S. and K. Forooraghi, "Green's function derivation of an annular waveguide for application in method of moment analysis of annular waveguide slot antennas," Progress In Electromagnetics Research, Vol. 89, 101-119, 2009.
doi:10.2528/PIER08121201

16. Rajamani, V., C. F. Bunting, M. D. Deshpande, and Z. A. Khan, "Validation of modal/MoM in shielding effectiveness studies of rectangular enclosures with apertures," IEEE Trans. Electromagn. Compat., Vol. 48, No. 2, 348-353, May 2006.
doi:10.1109/TEMC.2006.873864

17. Klinkenbusch, L. and On the shielding effectiveness of enclosures, "IEEE Trans. Electromagn. Compat.,", Vol. 47, No. 3, 589-601, Aug. 2005.
doi:10.1109/TEMC.2005.853162

18. Chiariello, A. G., G. Miano, and A. Maffucci, "An hybrid model for the evaluation of the full-wave far-field radiated emission from PCB traces," Progress In Electromagnetics Research, Vol. 101, 125-138, 2010.
doi:10.2528/PIER09120905

19. Sarto, M. S., "Hybrid MFIE/FDTD analysis of the shielding e®ectiveness of a composite enclosure excited by a transient plane wave," IEEE Trans. Magn., Vol. 36, No. 4, 946-950, Jul. 2000.
doi:10.1109/20.877598

20. Tharf, M. S. and G. I. Costache, "A hybrid finite element-analytical solutions for inhomogeneously fiilled shielding enclosures," IEEE Trans. Electromagn. Compat., Vol. 36, No. 4, 380-385, Nov. 1994.
doi:10.1109/15.328870

21. Duffy, P., T. M. Benson, and C. Christopoulos, "Application of Transmission Line Modeling (TLM) to studying the effectiveness of screened enclosures ," IEE Colloq. Screening of Connectors, Cables Enclosures, 2/1-2/3, Jan. 17, 1992.

22. Kraft, H. and Modeling leakage through finite apertures with TLM, "Proc. IEEE Int. Symp. Electromagnetic Compatibility,", 73-76, Aug. 22-26, 1994.

23. Argus, P., P. Fischer, A. Konrad, and A. J. Schwab, "Efficient modeling of apertures in thin conducting screens by the TLM method," Proc. IEEE Int. Symp. Electromagnetic Compatibility, Vol. 1, 101-106, Aug. 21-25, 2000.

24. Attari, R. and K. Barkeshli, "Application of the transmission line matrix method to the calculation of the shielding effectiveness for metallic enclosures," Proc. IEEE Antennas Propagation Soc. Int. Symp., Vol. 3, 302-305, Jun. 16-21, 2002.

25. Méndez, H. A., "Shielding theory of enclosures with apertures," IEEE Trans. Electromagn. Compat., Vol. 20, 296-305, May 1978.
doi:10.1109/TEMC.1978.303722

26. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Trans. Electromagn. Compat., Vol. 40, 240-248, Aug. 1998.
doi:10.1109/15.709422

27. Wallyn, W., F. Olyslager, E. Laermans, D. de Zutter, R. de Smedt, and N. Lietaert, "Fast evaluation of the shielding efficiency of rectangular shielding enclosures," Proc. IEEE Int. Symp. Electromagnetic Compatibility, 311-316, Seattle, WA, Aug. 1999.

28. Christodoulous, C. and M. Georgiopoulos, Applications of Neural Networks in Electromagnetics, Artech House, Boston, MA, 2001.

29. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, Norwood, MA, 2000.

30. Hasar, U. C., G. Akkaya, M. Aktan, C. Gozu, and A. C. Aydin, "Water-to-cement ratio prediction using anns from nondestructive and contactless microwave measurements," Progress In Electromagnetics Research, Vol. 94, 311-325, 2009.
doi:10.2528/PIER09061008

31. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ, 1994.

32. Rumelhart, D. E., G. E. Hinton, and R. J. Williams, "Parallel Distributed Processing," Vol. I, 318-362, D. E. Rumelhart and J. L. McClelland (eds.), MIT Press, Cambridge, MA, 1986.

33. Devabhaktuni, V. K., M. Yagoub, Y. Fang, J. Xu, and Q. J. Zhang, "Neural networks for microwave modeling: Model development issues and nonlinear modeling techniques," Int. J. RF Microwave Computer-aided Eng., Vol. 11, 4-21, 2001.
doi:10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I