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Abstract—In complex electromagnetic (EM) environment, EM field
distribution inside a metallic enclosure is determined by the external
EM radiation and emissions from internal contents. In the design of an
electronic system, we usually need to estimate the EM field level in a
concerned region inside the enclosure under various EM environments.
In this paper, we use artificial neural network (ANN), rather than full
wave analysis, combined with the numbered measurements to predict
the EM field in the concerned region inside a metallic enclosure. To
verify this method, a rectangular metallic enclosure with a printed
circuit board (PCB) is illuminated by external incident wave. The
measured electric fields inside the enclosure combined with ANN
model based on back propagation (BP) training algorithm are used
to estimate the values of electric field. The calculation is fast and
predictions reveal good agreement with the measurements that validate
this method.

1. INTRODUCTION

Due to complex EM environment, metallic enclosures are widely
used to protect most of the electronic and electrical systems from
unintentional and/or intentional EM interference. However, in most
practical applications, slots, holes, and even apertures have to be
created on the walls of the enclosure for signal wiring, power supply,
and heat dispersion. Unfortunately, these structures create EM energy
coupling paths that allow external EM field to propagate into the
enclosure, thus they degrade the shielding effectiveness [1–6]. In
addition, the internal circuits which can produce EM radiation will
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increase the EM complexity significantly in the metallic enclosure.
Their radiation and different locations will change the EM field
distribution in the enclosure, and then the induced signal may exceed
the given threshold values and thus produce nonlinear behaviors,
malfunctions or irreversible damages in an integrate circuits or other
components. So, in the optimization of system design, we need
to evaluate whether an important vulnerable and high-sensitivity
IC or semiconductor component could be disturbed in various EM
environments.

In order to handle these problems, some methods have been
proposed in the past year. Numerical method such as 3-D full wave
analysis method based on the Maxwell’s equations including the Finite
Difference Time Domain (FDTD) [7–11], Finite Element Method
(FEM) [12–14] and Moment Method (MoM) [15–17], has been used for
analyzing these problems. Some hybrid numerical techniques [18–20]
and transmission-line method [21–24] are also developed to analyze the
enclosure. However, the numerical method is severely limited by the
size of the enclosure. To achieve reasonable accuracy, one must choose
a grid size small enough to resolve the apertures, but the enormous
number of cells requires a large computer memory and computation
time. Along with these numerical approaches, analytical and semi-
analytical methods [25–27], are also used to analyze the shielding
effectiveness of metallic enclosures, they are fast and efficient but are
only applicable for very simple geometries and approximate treatment.
In an actual system design, we usually estimate the EM field in advance
under various locations of internal circuits and external incident fields,
but the field in the enclosure varies with different locations of internal
circuits and external incident field, and it is impossible to solve all
different states by solving one or several calculations.

These constraints motivate us to apply artificial neural network
(ANN) method to handle this problem. In this paper, we use ANN
model based on back propagation (BP) training algorithm, rather than
full wave analysis, combined with numbered measurements to predict
the EM field in a metallic enclosure. In our ANN models, the nodes
in the input layer represent the parameters of location of the PCB,
field strength of external incident wave, the polarization angle and
incident angle, etc, which influence the inner field of enclosure. There
exist some nodes in the hidden layer for nonlinear mapping. The
nodes in the output layer represent the prediction field. To validate
this method, a rectangular metallic enclosure with an aperture and a
printed circuit board (PCB) illuminated by an external incident wave
has been studied. Numerical examples show that the results predicted
by the trained ANN are in good agreement with those results obtained
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by measurement. Neural networks are very powerful, with the use
of ANN, the fast and preliminary prediction for the inner field under
different EM conditions can be made.

2. GEOMETRY OF THE SYSTEM

Consider the rectangular metallic enclosure with dimensions of a× b×
c = 50 × 100 × 100 cm and manufactured by six aluminum sheets of
thickness 5 mm as shown in Fig. 1(a) to verify the proposed method.
There is an aperture with dimensions of t×s = 12.5×11 cm in its front
wall. A PCB as shown in Fig. 1(b) is placed into the enclosure from
the center of the upper wall via a mechanical instrument. The PCB is
composed of a limiter, microstrip patches. The patches performing
like an antenna working at the central frequency of 2.5 GHz. It
can produce an intentional EM radiation to imitate the interference
effect of radiation from internal electronic circuits. Moreover, it can
be rotated horizontally to represent different circuit locations. The
limiter is an active component with VSWR ≤ 1.3 at 2–3 GHz and
predetermined threshold level of 10 dBm. The load is used to match
the PCB and absorb the excess energy. The incident plane wave is
provided by the far field of a broadband ridged horn antenna. A
rectangular horn antenna is used to receive external incident field and
the received power is transmitted to the circuit via a coaxial cable.
A monopole antenna is used to measure the field for training sample
sets and the ANN model is trained by the measured data. The system
is set up inside an anechoic chamber. The photograph of the actual
structure of the system is shown in Fig. 2.
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Figure 1. Structures of rectangular metallic enclosure with a PCB
(a) Enclosure illuminated by external incident wave, (b) The PCB.
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Figure 2. Photograph of the actual fabricated metallic enclosure in
anechoic chamber.

3. MODEL BASED ON ANN TECHNIQUE

Here, we use ANN model based on BP training algorithm, rather than
full wave analysis, to predict the EM field in the enclosure. Fast,
accurate and reliable neural network models can be developed from
measured or simulated microwave data. Once developed, these neural
models can be used in place of computational EM models to speed up
microwave investigation [28–30].

3.1. ANN Technique Introduction

In an ANN model, a neuron is an information-processing unit that is
fundamental to the operation of a neural network. The block diagram
of Fig. 3(a) shows the model of a neuron, which forms the basis for
designing ANN. In mathematical terms, we may describe a neuron by
writing the following equation:

ok = f




m∑

j=1

wkjij + bk


 (1)

where k is the neuron number, i1, i2, . . . , im are the input parameters;
wk1, wk2, . . . , wkj are the weights of neuron; bk is the bias; Ok is the
output parameter; f is the effect of applying an affine transformation
to the output.

Typically, a network as shown in Fig. 3(b) consists of a set of
sensory units that constitute the input layer, one or more hidden
layers, and an output layer [31, 32]. The neuron number l, m and n in
each layer are respected to input parameters, hidden neuron number
and output parameters, respectively. The nodes in the input layer
represent the effective parameters on inner field. The nodes in the
hidden layer are used to nonlinear mapping, an appropriate value for
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(a) (b)

Figure 3. The ANN model based on BP training algorithm. (a)
Model of a neuron, (b) neural network framework for prediction.

m can avoid the overlearning and underlearning problems [33], their
choice is usually based on the experience and early research data, it
can be calculated by the approximate expression (m = sqrt(l + n) + q,
q is integer from 1 to 10). The nodes in the output layer represent the
results of prediction. Supervised learning arithmetic which using the
steepest gradient descent method to reach any small approximations is
adopted. The training process is described by the following equations
to update these weights, bias values. The output of the jth neuron in
the hidden layer is calculated by following steps:

netj =
k∑

i=1

w2,iii + b2,j j = 1, 2, . . . ,m. (2)

aj = fhidden(netj) j = 1, 2, . . . ,m. (3)
where net j is the activation value, aj is the output of the hidden layer,
and fhidden is called the activation function which is usually a linear,
sigmoid or tansig function. The sigmoid used in this model is described
as:

fhidden(x) =
1

1 + exp(−x)
(4)

The outputs of the p neuron in the output layer are given as bellow:

op = foutput

(
m∑

i=1

w3,iii + b3,i

)
p = 1, 2, . . . , n. (5)

where foutput is the activation function, usually a linear function. All
weights are assigned with random values initially, and are modified by
the delta rule according to the learning samples traditionally. Mean
squared error (MSE) is selected as the search objective of our approach
which is written as:

MSE =
n∑

i=1

(α− τ)2 (6)
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where α presents the authentic values which are already known, such
as simulated or measured data, τ is the output values of the trained
neural network. Our goal is to minimize the MSE making sure that
the prediction is closer to the true as possible as they can.

3.2. ANN Based Prediction Modeling Technique

A drawing of a metallic enclosure with a circuit is shown in Fig. 1. The
field in the enclosure is produced by the coupling of external incident
wave from aperture and the internal radiation of circuit. To estimate
the EM field in enclosure under various placements of internal circuits
and external incident field, a three-layer BP neural network as shown
in Fig. 4 is used to solve the EM interference problem. The interference
parameters, such as incident direction, polarization characteristic,
incident electric intensity, placement of circuit and frequency, construct
the input layer of the ANN model. Several nodes in the hidden layer are
used to nonlinear mapping. The output layer represents the predicted
voltage which then can be described by using ANN as follows:

Vo = FANN

(
Ei,Λ, ϕ, γ, θ, f

)
(7)

where FANN represents ANN model of each Interference parameters.
It can be found that the predicted voltage (Vo) is a function of
Ei, Λ, ϕ, γ, θ which represent the incident electric intensity, incident
direction (Λ, ϕ), polarization characteristic, placement of circuit and
frequency, respectively.

Once the inputs and outputs are identified, training data needs
to be generated. In this paper, the training data sets are obtained
directly from numbered measurement and the number of samples is
chosen that the ANN model accurately represents the original problem.
A uniform sampling strategy is selected that each input parameter is
sampled at equal intervals. The order of magnitude of input parameter
values in this application can be very different for the input parameters
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Figure 4. The ANN model for the EM interference problem.
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Figure 5. The whole steps involved in neural model development.

have different physical dimension, a data scaling technique is used to
improve the training process which is given by [33]

x̄ = xmin +
x− xmin

xmax − xmin
(xmax − xmin) (8)

where x̄ and x represent a generic element in the vectors of scaled
and not scaled data, respectively, (xmin, xmax) is the range of input
parameter.

The training was conducted by using BP algorithm until the
difference between the training data and the output from the ANN
model has reached less than 0.1%. The whole steps involved in ANN
model development is shown in Fig. 5 After the ANN model has been
trained, it can use to predict in different conditions.

4. EXAMPLES AND DISCUSSION

In this section, numerical examples are given to show the process of
using the ANN method described above to solve the EM interference
problem. Assume the location of the monopole antenna is the
concerned region where an important, vulnerable and high-sensitivity
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device will be stored. Firstly, we should get the training sample set by
measuring the internal electric field. Then, we use the obtained data
to train the ANN model and finally predict the results by the trained
model.

4.1. Measure the EM Field

A monopole antenna as shown in Fig. 1(a) is used to sense the field in
the enclosure. Its output connector is connected to port of spectrum
analyzer terminated in a 50-Ω load. In this way, the output power
Po of the monopole antenna is accurately measured by the spectrum
analyzer. Then, the output monopole antenna voltage V is calculated
as follows:

V =
√

PoZo (9)

where Zo = 50 Ω is the characteristic impedance of type N connector.
When Po is measured, we can get voltage V from (9) easily and evaluate
the electric field level in the enclosure.

4.2. Neural Network Training and Test

As a first example, we research the influence of circuit location in the
enclosure. We rotate the PCB as shown in Fig. 1 to imitate various
locations of internal circuit and predict the electric field under arbitrary
rotation angle θ of the PCB through numbered measurements. In order
to construct such a model, the number of nodes in the input layer of
the ANN is set to be l = 1 which represents the rotation angle θ of the
PCB. It is the interference parameter for electric field strength. The
number of nodes in the hidden layer is set to be m = 11 which is used
for nonlinear mapping. The number of nodes in the output layer is set
to be n = 1 which represents the predicted induced voltages.

In the learning phase, we use numbered measurements to train
the ANN model. The rotating platform above the enclosure can rotate
from 0 to 180 degree. The electric field strength in different rotation
angle θ of the PCB is measured in this range for the training sample
points. The sampling interval is ∆θ = 10◦, so there are 19 training
sample points are used to train the model. In the predicting phase,
other 6 test points which are selected in the range of [0◦, 180◦] and
different from the training points are used to validate the prediction.
Ranges and sampling levels for the training and test points are given
in Table 1.

The microwave power source produces an incident plane wave at
2.5GHz and offers a constant power level in the process. The system
is illuminated by the external incident wave. Fig. 5 shows the electric
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Table 1. The training and test points for the model.

Input parameters Notation
Values in

sampled levels

Sampling

interval

Training samples θ
(0◦ ∼180◦)

19-level sampling
∆θ = 10◦

Test samples θ
(0◦ ∼180◦)

6-level sampling
∆θ = 30◦

Figure 6. The comparison of
prediction and measurements.

Figure 7. The comparison of
measured and predicted results at
2.5GHz under different rotation an-
gles and radiation power levels (a)
θ = 30◦; (b) θ = 90◦; (c) θ = 150◦.

field strength for different rotation angle θ of PCB predicted by the
neural network model. For comparison, the measurements are also
given in Fig. 6. It shows that they are in agreement.

The field in the enclosure is determined by both the radiation
coupled from aperture and radiation of the PCB. The presence of
the circuit which has active component makes the field complicated.
Therefore, it is clearly that the internal electric field strength will not
proportional to the external radiation power level. In the next example,
external incident field, as an interference parameter, is also included
in the ANN model. We will predict the electric field strength in the
enclosure under different rotation angle θ of the PCB and external
incident field through numbered measurements.

The neural network for this model is the same as the previous
model except that the number of input nodes is set to be l = 2
which represent interference parameters of rotation angle θ of PCB and
external radiation power levels. The number of nodes in the hidden
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layer and output layer are set to be m = 12 and n = 1, respectively.
The rotation angle θ of PCB and the external radiation power level Pr

for the training sample sets are selected in the range of [0◦, 180◦] with
sampling interval of ∆θ = 10◦ and [1W , 30W ] with sampling interval
of ∆p = 5W , respectively. Thus there are 133 training sample points
are used to train the model. The electric field strength for test sample
points which are different from the training points is also measured.
Ranges and sampling levels of the input parameters θ and Pr for the
training and test points are given in Table 2. The microwave power
source produces an incident plane wave at 2.5 GHz to illuminate the
system. The power levels are set by adjusting the transmitted power
of the antenna.

After training the ANN model, we used it to predict. For the test
points, arbitrary values in the given ranges as described in Table 2 are
selected to validate the predictions. The comparison of the prediction
and measurement results at 2.5 GHz under different rotation angles
and radiation power levels are given in Fig. 7. The prediction error is
shown in Fig. 8, the maximal error is less than 9%. The results show

Table 2. Training and test points for the model.

Input parameters Notation Values in sampled levels

Training

samples

Rotation θ (0◦ ∼180◦) 10-level sampling

Radiation

power
Pr (1W ∼ 30W ) 7-level sampling

Test

samples

Rotation θ Arbitrary values in the range of 0◦ ∼180◦

Radiation

power
Pr Arbitrary values in the range of 1W ∼ 30W

Figure 8. Prediction errors of prediction data sets and test data sets.
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that they are in good agreement, and validate that the trained ANN
model can predict the electric field strength at an arbitrary rotation
angle θ of PCB and radiation power level in the given ranges.

All of the numerical computations above were executed on our
computer with a CPU of AMD Core 2 1.91GHz and 4 GB RAM. All
the input and output parameters are normalized into values in the
range of [0, 1] by data scaling technology during the computation [33].
The time required in the training work of one neural network model
is not more than 10 minutes. However, the numerical methods such
as FDTD will generate a large number of grid cells and require several
hours or more time for the field in the same enclosure. Although the
time consumed in the measurement and training increases with the size
of ANN model, it can be completed in advance. The main advantage
of using ANN method is that it’s almost real-time in prediction. In
addition, the prediction is accurate from the engineering point of view.

5. CONCLUSION

In this paper, the ANN method is introduced to predict the EM field
in the metallic enclosure. The influence parameters for field in the
enclosure are extracted to construct the ANN model. Although, only
location of PCB and external radiation power level are included in the
paper, it could be used to construct for a more complex system. The
expression of method described here simply serves as a catalyst. It
doesn’t need 3D model and long time of computation, but only needs
some training data which obtained by measurement or simulation.
Once the ANN model for the problem is trained, it can predict the
EM field and give a quick answer in various internal and external
EM environments. Although the training of an ANN model is usually
time consuming, it can be completed in advance. Numerical examples
show that the results predicted by the ANN models are consistent with
those obtained by measurements and this method can be used in the
application of the enclosure analysis.
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