Vol. 30
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-05-06
A 3D Model to Characterize High-Frequency Scattering by Urban Areas for Monostatic and Bistatic Radar Configurations
By
Progress In Electromagnetics Research B, Vol. 30, 83-102, 2011
Abstract
In this paper, we propose a 3D model to characterize the field scattered by an urban area, which is composed of a group of buildings, for both monostatic and bistatic radar configurations. This model is based on a ray-tracing technique combined with the Uniform Theory of Diffraction (UTD). It is useful not only in elucidating mechanisms of ray propagation through the observed area, but also in evaluating the amplitude and the phase of any point in the far-zone scattered field above the ground. In order to validate the model, some comparisons with the commercial software XGTD R are presented. In addition, our model is tested against 33-37 GHz indoor measurements conducted in the anechoic chamber of the "ElectroMagnetic Effects Research Lab" (EMERL) in Singapore. These latter comparisons have shown that the model can predict precisely the location of a target placed between two metallic plates representing walls.
Citation
Ngoc Truong Minh Nguyen, David Lautru, and Helene Roussel, "A 3D Model to Characterize High-Frequency Scattering by Urban Areas for Monostatic and Bistatic Radar Configurations," Progress In Electromagnetics Research B, Vol. 30, 83-102, 2011.
doi:10.2528/PIERB11030801
References

1. Gierull, C. H., "Statistical analysis of multilook SAR interferograms for CFAR detection of ground moving targets," IEEE Trans. on Geosci. and Remote Sens., Vol. 42, No. 4, 691-701, Apr. 2004.
doi:10.1109/TGRS.2003.821886

2. Tison, C., J.-M. Nicolas, F. Tupin, and H. Maître, "New statistical model for Markovian classification of urban areas in high-resolution SAR images," IEEE Trans. on Geosci. and Remote Sens., Vol. 42, No. 10, 2046-2057, Oct. 2004.
doi:10.1109/TGRS.2004.834630

3. Garestier, F., P. Dubois-Fernandez, X. Dupuis, P. Paillou, and I. Hajnsek, "PolInSAR analysis of X-Band data over vegetated and urban areas," IEEE Trans. on Geosci. and Remote Sens., Vol. 44, No. 2, 356-364, Feb. 2006.
doi:10.1109/TGRS.2005.862525

4. De Adana, F. S., O. G/ Blanco, I. G. Diego, J. P. Arriaga, and M.F. Cátedra, "Propagation model based on ray tracing for the design of personal communication systems in indoor environments," IEEE Trans. on Vehicular Techno., Vol. 49, No. 6, 2105-2112, Nov. 2000.
doi:10.1109/25.901882

5. Degli-Esposti, V., "A diffuse scattering model for urban propagation prediction," IEEE Trans. on Ant. and Propa., Vol. 49, No. 7, 1111-1113, Jul. 2001.
doi:10.1109/8.933491

6. Chang, P. C., R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, "High-frequency EM characterization of through-wall building imaging," IEEE Trans. on Geosci. and Remote Sens., Vol. 47, No. 5, 1375-1387, May 2009.
doi:10.1109/TGRS.2009.2016082

7. El Sallabi, H. M. and P. Vaikikainen, "Improvements to diffraction coefficient for non-perfectly conducting wedge," IEEE Trans. on Ant. and Propa., Vol. 53, No. 9, 3105-3109, Sep. 2005.
doi:10.1109/TAP.2005.854534

8. Soni, S. and A. Bhattacharya, "New heuristic diffraction coefficient for modeling of wireless channel," Progress In Electromagnetics Research, Vol. 12, 125-137, 2010.

9. XGTD R°, Remcom, Inc., 2010, XGTD version 2.5.16 User's Manual.

10. Burkholder, R. J., L. J. Gupta, and J. T. Johnson, "Comparison of monostatic and bistatic radar images," IEEE Trans. on Ant. and Propa., Vol. 45, No. 3, 41-50, Jun. 2003.
doi:10.1109/MAP.2003.1232162

11. Ben Kassem, M. J. and A. Khenchaf, "Bistatic mapping radar BiSAR," OCEANS 2003 Proceedings, Vol. 5, 2754-2760, Sep. 2003.