Vol. 23
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-04-12
Nonlinear Traveling-Wave Field-Effect Transistors for Managing Dispersion-Free Envelope Pulses
By
Progress In Electromagnetics Research Letters, Vol. 23, 29-38, 2011
Abstract
A specialized type of traveling-wave field-effect transistor (TWFET), the gate and drain lines of which contain series capacitors, series inductors, shunt capacitors, and shunt inductors, is considered to provide a platform to manage unattenuated dispersion-free envelope pulses. Because of the nonlinearity caused by the gate-source Schottky capacitance, the dispersive distortion is well compensated. Moreover, the FET gain can cancel the wave attenuation caused by electrode losses. This paper discusses the design criteria of a TWFET using the nonlinear Schrodinger equation obtained by perturbation. Several numerical calculations follow to validate it.
Citation
Koichi Narahara, "Nonlinear Traveling-Wave Field-Effect Transistors for Managing Dispersion-Free Envelope Pulses," Progress In Electromagnetics Research Letters, Vol. 23, 29-38, 2011.
doi:10.2528/PIERL11021801
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-Interscience, 2006.

2. Gupta, S. and C. Caloz, "Dark and bright solitons in left-handed nonlinear transmission line metamaterials," Proc. IEEE MTT-S Int'l. Microwave Symp. 2007, 979-982, Honolulu, 2007.

3. Kafaratzis, A. and Z. Hu, "Envelope solitons in nonlinear left-handed transmission lines," Proc. Metamaterials 2007, 771-773, Rome, Oct. 22-24, 2007.

4. Gharakhili, F. G., M. Shahabadi, and M. Hakkak, "Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors," Progress In Electromagnetics Research, Vol. 96, 237-249, 2009.
doi:10.2528/PIER09080106

5. Ogasawara, J. and K. Narahara, "Short envelope pulse propagation in composite right- and left-handed transmission lines with regularly spaced Schottky varactors," IEICE Electron. Express, Vol. 6, 1576-1581, 2009.
doi:10.1587/elex.6.1576

6. McIver, G. W., "A traveling-wave transistor," Proc. IEEE, Vol. 53, 1747-1748, 1965.
doi:10.1109/PROC.1965.4364

7. Narahara, K. and S. Nakagawa, "Nonlinear traveling-wave field effect transistors for amplification of short electrical pulses," IEICE Electron. Express, Vol. 7, 1188-1194, 2010.
doi:10.1587/elex.7.1188

8. Gupta, K. C., R. Garg, I. J. Bahl, and , Microstrip Lines and Slotlines, Artech, 1979.

9. Taniuti, T., "Reductive perturbation method and far fields of wave equations," Prog. Theor. Phys. Suppl., Vol. 55, 1-55, 1974.
doi:10.1143/PTPS.55.1

10. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Interscience, 1994.