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Abstract—A specialized type of traveling-wave field-effect transistor
(TWFET), the gate and drain lines of which contain series capacitors,
series inductors, shunt capacitors, and shunt inductors, is considered
to provide a platform to manage unattenuated dispersion-free envelope
pulses. Because of the nonlinearity caused by the gate-source Schottky
capacitance, the dispersive distortion is well compensated. Moreover,
the FET gain can cancel the wave attenuation caused by electrode
losses. This paper discusses the design criteria of a TWFET using
the nonlinear Schrödinger equation obtained by perturbation. Several
numerical calculations follow to validate it.

1. INTRODUCTION

Recently, soliton-like pulses in a composite right- and left-handed
(CRLH) transmission line [1] have been well investigated [2–5].
Because of dispersion, a broadband pulse cannot travel on the CRLH
line without distortion. The dispersion of CRLH lines can be
compensated through the nonlinearity introduced by the varactors,
resulting in an envelope soliton governed by the nonlinear Schrödinger
equation. However, the large parasitic resistance of the inductor
greatly diminishes the amplitude of the waves on the line, making the
varactor’s nonlinearity inefficient in compensating for the dispersion
of the CRLH lines. To cancel the wave attenuation, we consider
a traveling-wave field-effect transistor (TWFET) [6, 7], the gate and
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drain transmission lines of which have a CRLH line structure. In
this paper, we first describe the device configuration and operating
principles, including the dispersion, and the properties of the one-
soliton solution of the nonlinear Schrödinger equation that describes
the line. We then numerically observe the cancellation of the dispersion
and attenuation present in the envelope pulses.

2. FUNDAMENTAL PROPERTIES OF TWFET

Figure 1(a) shows the device structure under investigation. The
parameters LRg, CLg, and LLg are the series inductance, series
capacitance, and shunt inductance of the gate line, respectively. The
elements subscripted with d correspond to the drain line. Rg, Rd,
Ring, and Rind are the gate series resistance, drain series resistance,
gate shunt resistance, and drain shunt resistance, respectively. The
gate and drain lines are connected to the gate and drain electrodes
of a FET for each cell. A FET is equivalently represented as
shown in Figure 1(b). The drain-source, gate-drain, and gate-source
capacitances are represented by Cds, Cgd, and Cgs, respectively. The
gate-source capacitance depends on the terminal voltage due to the
Schottky contact interface. The drain-source current is represented
by current source Ids, which depends on the gate bias and drain
bias voltages. Biasing voltages VGG and VDD can be applied to each
transistor through the shunt capacitance and inductance.

(a) (b)

Figure 1. Unit cell of TWFET. (a) Structure and (b) equivalent
representation.
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Using this representation, the transmission equations are given by
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where In, Jn, Vn, and Wn are the gate current at the nth cell, drain
current at the nth cell, gate voltage at the nth cell, and drain voltage
at the nth cell, respectively. Moreover, we define Cgs as

Cgs(V ) =
C0(

1− V
VJ

)m , (5)

where C0, VJ , and m are the zero-bias junction capacitance, junction
potential, and grading coefficient, respectively. The drain-source
current is defined as

Ids(V, W ) =





0, V < VTO,
β(V − VTO)2, VTO ≤ V < VTO + W,
βW (2(V − VTO)−W ), V ≥ VTO + W,

(6)

where V , W , β, and VTO are the gate, drain voltages, transconductance
coefficient, and threshold voltage, respectively. We first linearize
Equations (1)–(4) to examine the dispersive property of the line.
Because the line has a very complicated structure, any characterizing
expressions become formidable; therefore, we hereafter confine the
discussion to a TWFET with the parameters listed in Table 1 for
concise illustrations. The main features are properly illustrated by the
example listed in Table 1. Consistently, C0 is set to 1.11 pF. Moreover,
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Table 1. Line parameters of investigated TWFET.

LRg (nH) 2.0 LRd (nH) 1.6
CLg (pF) 0.5 CLd (pF) 1.0
LLg (nH) 1.2 LLd (nH) 0.8

Cgs(VGG) (pF) 1.5 Cds (pF) 1.0
Cgd (pF) 0.2

Figure 2. Typical dispersion of TWFET.

m and VJ are set to 0.5 and 2.0V, respectively. We suppose microwave
surface-mount capacitors and inductors to realize these line parameters
and print-circuit-board fabrication. The dispersion relationship is then
shown in Figure 2. Because of the couplings, there are at most two
different modes for each frequency [8]. Note that modes 1 and 3 exhibit
a left-handed property, while modes 2 and 4 exhibit right-handedness.
Each mode has its own voltage fraction (= drain voltage/gate voltage)
between the gate and drain lines, denoted as Ri(ω) for mode i (i = 1,
2, 3, 4).

In order to investigate the contributions of nonlinearity, we
introduce the spatial continuous variable x, defining functions V =
V (x, t) and W = W (x, t) as the continuous counterpart of the voltages
at the nth cell Vn and Wn, respectively. Moreover, we prepare the
respective spatial and temporal coordinates for the envelope and carrier
waves. We use x, and t as the spatial and temporal coordinates,
respectively, for the description of the carrier wave. For the envelope
wave, ξ ≡ ε(x−Vgt), and τ ≡ ε2t are used as the spatial and temporal
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coordinates, Vg is given by ∂kω(k), where ω = ω(k) denotes the
dispersion relationship for wave number k. We then expand the voltage
variables as
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With these definitions, we obtain the following nonlinear Schrödinger
(NS) equation with a gain term that describes w

(1)
1 by applying the

reductive perturbation method [9] to Equations (1)–(4),
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where p and q are the dispersion and nonlinearity coefficients. If pq > 0,
we obtain a bright soliton solution with amplitude A given by
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Therefore, when the contributions of O(ε) components are dominant,
W is calculated as
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where A0 = 2εA. Furthermore, we observe that each mode can support
a soliton-like pulse, and the soliton-like pulse carried by mode i (i = 1,
2, 3, 4) has the voltage fraction of Ri between the gate and drain lines.

For the line parameters listed in Table 1, the properties of a one-
soliton solution are shown in Figure 3. The pulse width and voltage
fraction between the lines are shown by the solid and dashed curves.
The one-soliton solutions carried by modes 1, 2, 3, and 4 are shown
in Figures 3(a), (b), (c), and (d), respectively. In the shaded regions,
the product pq becomes negative; therefore, the bright solitons cannot
develop.

The attenuation factor ν of the one-soliton solutions carried
by modes 1, 2, 3, and 4 are shown in Figures 4(a), (b), (c),
and (d), respectively. The wave losses are mainly caused by the
parasitic resistances of inductors. Generally, the resistances tend to
be proportional to the corresponding inductances. We thus set Rg,
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(a) (b)

(c) (d)

Figure 3. Properties of bright one-soliton solution.

Rd, Ring, and Rind to 0.04, 0.032, 0.024, and 0.016Ω, respectively.
Moreover, VTO, VGG, and β to −1.0V, −0.9V, and 1.0mAV−2,
respectively. Note that the pulse becomes amplified when ν < 0. For
the present parameters, amplified pulses can be observed only in a
bounded frequency range of mode 3.

3. NUMERICAL EVALUATION

We numerically solve Equations (1)–(4) using the standard finite
difference method [10] to determine the capability of the line to support
unattenuated dispersion-free envelope pulses, and examine the validity
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(a) (b)

(c) (d)

Figure 4. Amplification of nonlinear pulse by FET contributions.

of the design criteria discussed above. We discuss the results for the
parameters in Table 1.

Figure 5 compares the pulse traveling in the linear and nonlinear
TWFETs. The losses and drain-source current were all set to zero. The
carrier frequency was set to 2.8GHz and the input voltage fraction
between the gate and drain lines was set to R3 (= −0.5), such
that the pulse is supposed to be carried by mode 3. Moreover, for
the linear line, the gate-source capacitance was fixed at Cgs(VGG).
Five temporal waveforms recorded at n = 200, 600, 1000, 1400
and 1800 are shown for the drain line. We can see that the pulse
spreads due to dispersion in Figure 5(a). The dispersive distortion
is successfully cancelled by the nonlinearity in Figure 5(b). The
nonlinear pulses monitored at n = 1800 are shown in Figure 6 with
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(a) (b)

Figure 5. Compensated dispersion of nonlinear pulse. Numerically
obtained waveforms for (a) linear and (b) nonlinear lines.

(a) (b)

Figure 6. Comparison between analytical and numerical pulses.

analytical envelope waveforms given by Equation (11). Figures 6(a)
and (b) are the waveforms on the gate and drain lines, respectively.
The numerical waveforms are represented by gray curves. Only the
envelopes are shown for the analytical waveforms by the solid curves.
Originally, Equation (11) describes a soliton-like pulse having a small
amplitude that can be treated perturbatively. However, the numerical
waveforms are well characterized by the analytical ones. Although
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(a) (b)

Figure 7. Numerical observation of loss-compensated nonlinear pulse.
Loss line (a) without (b) with FET gain.

not explicitly described, the similarity between the numerical and
analytical waveforms has been well established for several sets of line
parameters other than those in Table 1. On the other hand, because
of the asymmetric capacitance-voltage relationship of the Schottky
varactors, some numerical waveform observed in the gate line is also
asymmetrical in amplitude.

Finally, we discuss the loss-compensation in TWFETs. We set
Rg, Rd, Ring, and Rind to 0.04, 0.032, 0.024, and 0.016 Ω, respectively.
Figure 7 shows the contribution of FET gain to dispersion-free pulse
propagation. Five waveforms on the drain line recorded at n = 200,
600, 1000, 1400 and 1800 are shown. Figure 7(a) corresponds to the
case where β is set to zero. The pulse is simply attenuated to disappear
at n = 1000. On the other hand, we set β = 0.79mAV−2 in Figure 7(b)
such that the attenuation factor ν becomes almost zero. We can see
that the unattenuated shape-invariant pulse travels in TWFETs. This
observation verifies the potential of TWFETs to support unattenuated
dispersion-free envelope pulses.

4. CONCLUSION

We characterized TWFETs, each electrode line of which has the
same unit-cell structure as a CRLH line, to develop unattenuated
dispersion-free pulses. Using design parameters such as the dispersion
coefficient p, nonlinearity coefficient q, and attenuation factor ν, we
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can freely design the length or area of a platform for dispersion-free
pulse propagation. We believe that this may significantly increase the
applications of nonlinear pulses in high-speed electronics.
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