Vol. 115
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-04-05
Extracting Coupling Matrix and Unloaded q from Scattering Parameters of Lossy Filters
By
Progress In Electromagnetics Research, Vol. 115, 303-315, 2011
Abstract
This paper presents a method for extracting the coupling matrix and the unloaded Q from the measured (or electromagnetic simulated) S-parameters of a narrow band cross-coupled resonator bandpass filter with losses. The Cauchy method is applied to determine the characteristic polynomials of the S-parameters of a filter in the normalized low-pass frequency domain. A five-parameter optimization method is proposed to obtain the unloaded Q and remove the phase shift of the measured S-parameters, which is caused by the phase loading and the transmission lines at the input/output ports of a filter. Once the characteristic polynomials of the S-parameters with the phase shift removed have been determined, the coupling matrix of a filter with a given topology can be extracted using well established techniques. Two application examples are given to illustrate the validity of the proposed method.
Citation
Rui Wang, and Jun Xu, "Extracting Coupling Matrix and Unloaded q from Scattering Parameters of Lossy Filters," Progress In Electromagnetics Research, Vol. 115, 303-315, 2011.
doi:10.2528/PIER11021604
References

1. Lampérez, A. G., S. L. Romano, M. S. Palma, and T. K. Sarkar, "Efficient electromagnetic optimization of microwave filters and multiplexers using rational models," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 508-521, Feb. 2004.
doi:10.1109/TMTT.2003.822021

2. Macchiarella, G. and D. Traina, "A formulation of the Cauchy method suitable for the synthesis of lossless circuit models of microwave filters from lossy measurements," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 243-245, May 2006.
doi:10.1109/LMWC.2006.873583

3. Esmaeili, M. and A. Borji, "Diagnosis and tuning of multiple coupled resonator filters," IEEE 18th Iranian Conference on Electrical Engineering (ICEE), 124-129, Isfahan, Iran, May 2010.

4. Macchiarella, G., "Extraction of unloaded Q and coupling matrix from measurements on filters with Large losses," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 307-309, Jun. 2010.
doi:10.1109/LMWC.2010.2047455

5. Lampérez, A. G., T. K. Sarkar, and M. S. Palma, "Generation of accurate rational models of lossy systems using the Cauchy method," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 10, 490-492, Oct. 2004.
doi:10.1109/LMWC.2004.834576

6. Michalski, J. J., "Inverse modeling in application for sequential filter tuning," Progress In Electromagnetics Research, Vol. 115, 113-129, 2011.

7. Meng, M. and K. L. Wu, "An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 3188-3195, Dec. 2009.
doi:10.1109/TMTT.2009.2033868

8. Hsu, H.-T., Z. Zhang, K. A. Zaki, and A. E. Atia, "Parameter extraction for symmetric coupled-resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2971-2978, Dec. 2002.
doi:10.1109/TMTT.2002.805283

9. Kahrizi, M., S. Safavi-Naeini, S. K. Chaudhuri, and R. Sabry, "Computer diagnosis and tuning of RF and microwave filters using model-based parameter estimation," IEEE Trans. Circuit Syst. I, Vol. 49, No. 9, 1263-1270, Sep. 2002.
doi:10.1109/TCSI.2002.802363

10. Harscher, P., R. Vahldieck, and S. Amari, "Automated filter tuning using generalized low-pass prototype networks and gradient-based parameter extraction," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 12, 2532-2538, Dec. 2001.
doi:10.1109/22.971646

11. Pepe, G., F.-J. Gortz, and H. Chaloupka, "Sequential tuning of microwave filters using adaptive models and parameter extraction," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 22-31, Jan. 2005.
doi:10.1109/TMTT.2004.839342

12. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

13. Wen, S. and L. Zhu, "Numerical synthesis design of coupled resonator filters," Progress In Electromagnetics Research, Vol. 92, 333-346, 2009.
doi:10.2528/PIER09041102

14. AlHawari, A. R. H., A. Ismail, M. F. A. Rasid, R. S. A. R. Abdullah, B. K. Esfeh, and H. Adam, "Compact microstrip band-pass filter with sharp passband skirts using square spiral resonators and embedded-resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 675-683, 2009.
doi:10.1163/156939309788019895

15. Jaimes-Vera, A., I. Llamas-Garro, and A. Corona-Chavez, "Coaxial narrowband filters using a versatile suspended resonator," Progress In Electromagnetics Research, Vol. 115, 79-94, 2011.

16. Zhu, Y. Z., H. S. Song, and K. Guan, "Design of optimized selective quasi-elliptic filters," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1357-1366, 2009.
doi:10.1163/156939309789108507

17. López-García, B., D. V. B. Murthy, and A. Corona-Chávez, "Half mode microwave filters based on Epsilon near zero and Mu near zero concepts," Progress In Electromagnetics Research, Vol. 113, 379-393, 2011.

18. Velázquez-Ahumada, M. D. C., J. Martel, F. Medina, and F. Mesa, "Design of band-pass filters using stepped impedance resonators with floating conductors," Progress In Electromagnetics Research, Vol. 105, 31-48, 2010.
doi:10.2528/PIER10042010

19. Weng, M. H., C. H. Kao, and Y. C. Chang, "A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric Sirs for Wlans," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 161-168, 2010.
doi:10.1163/156939310790735679

20. Lai, X., N. Wang, B. Wu, and C. H. Liang, "Design of dual-band filter based on OLRR and DSIR," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 209-218, 2010.
doi:10.1163/156939310790735723

21. Lin, H. J., X. Q. Chen, X. W. Shi, L. Chen, and C. L. Li, "A dual passband filter using hybrid microstrip open loop resonators and coplanar waveguide slotline resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 141-149, 2010.
doi:10.1163/156939310790322118

22. Abu-Hudrouss, A. M. and M. J. Lancaster, "Design of multiple-band microwave filters using cascaded filter elements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2109-2118, 2009.
doi:10.1163/156939309790109225

23. Li, R.-Q., X.-H. Tang, and F. Xiao, "An novel substrate integrated waveguide square cavity dual-mode Filter," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17--18, 2523-2529, 2009.

24. Mo, S.-G., Z.-Y. Yu, and L. Zhang, "Compact dual-mode bandpass filters using hexagonal meander loop resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1723-1732, 2009.
doi:10.1163/156939309789566941

25. Amari, S., R. Rosenberg, and J. Bornemann, "Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 8, 1969-1978, Aug. 2002.
doi:10.1109/TMTT.2002.801348

26. GA Toolbox, , http://www.shef.ac.uk/acse/research/ecrg/getgat.html.