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Abstract—This paper presents a method for extracting the coupling
matrix and the unloaded Q from the measured (or electromagnetic
simulated) S-parameters of a narrow band cross-coupled resonator
bandpass filter with losses. The Cauchy method is applied to determine
the characteristic polynomials of the S-parameters of a filter in the
normalized low-pass frequency domain. A five-parameter optimization
method is proposed to obtain the unloaded Q and to remove the phase
shift of the measured S-parameters, which is caused by the phase
loading and the transmission lines at the input/output ports of a filter.
Once the characteristic polynomials of the S-parameters with the phase
shift removed have been determined, the coupling matrix of a filter with
a given topology can be extracted using well established techniques.
Two application examples are given to illustrate the validity of the
proposed method.

1. INTRODUCTION

Computer aided diagnosis (CAD) and tuning of a microwave-coupled
resonator filter have drawn a great deal of interest in recent years, such
as Cauchy methods in [1–5], the sequential tuning method recently
reported in [6], analytical methods in [7, 8], and optimization methods
in [9–11]. Extraction of the coupling matrix (CM) and the unloaded
Q from measurements (or simulations) is very useful in CAD and
practical tuning of filters, revealing the differences with the designed
one and guaranteeing each step of a tuning in the right direction. CAD
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has a significant impact on the overall filter production cost and project
schedules.

The main difficulty of the sequential tuning is that it is not
always convenient to segregate each resonator or coupling element
in a filter structure such as dielectric resonator filters. Cauchy
method has proved to be an effective technique for extracting the
characteristic polynomials F, P and E of a filter from the measured
S-parameters, where S11 = F/E, S21 = P/E [1–5]. However, the
methods in [1–3] can only deal with a lossless or low-loss filter, which
restricts its practical uses. In addition, the phase-shift effects of the
measured S-parameters, which are caused by the phase loading and
the transmission lines at the input/output (I/O) ports of a physical
filter, were not discussed in [1–5]. The polynomials F, P and E solved
in one step [5] are not suitable for the CM extraction by well-known
established technique [12] because of the phase shift, when the raw
measured S11 and S21 are used directly. The polynomials F, P and
E solved in two steps [1–4] are only suitable for the CM extraction
in the case of the measured S11 and S21 with the same phase shift,
because the same phase shift is removed automatically when F and P
are calculated using a ratio of the measured S11 to S21 at frequency
samples (E is then evaluated by solving the Feldkeller’s equation).
In [7], the phase loading concept is revealed for the first time in CAD.
Some techniques have also been proposed for removing the phase-
shift effects from the S-parameters [7, 8]. However, the method in [7]
requires carefully select frequency samples far below or above the center
frequency because of some features of the response such as the presence
of spurious passbands and the frequency-dependent coupling, and the
measurement noise in the original data acquired from a vector network
analyzer need to be removed in advance; The method reported in [8]
requires the additional transmission lines at a filter I/O ports, which
leads to the inconvenience and difficulties in practical uses.

In this paper, a simple and effective optimization method is
proposed to obtain the unloaded Q and to remove the phase shift of
the measured S-parameters at the I/O ports of a filter. Different from
direct optimization of the CM elements [9–11], the proposed method
only includes five optimized parameters, which are independent on the
order and the topology of a filter. In our method, the phase shift of
the measured S-parameters is derived using the optimized parameters.
When removing the phase shift and obtaining the unloaded Q by
the proposed five-parameter optimization method, the characteristic
polynomials F, P and E are solved in one step by the method in [5].
Finally, the CM is extracted from the polynomials of S-parameters by
well-known established technique [12]. Besides [12], a method in [13]
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for numerically synthesizing the CM of coupled resonator filters was
introduced. However, it was only suitable for the canonical quadruplet
structure.

Using the presented method, there is no need to deal with the
degenerate poles of the admittance parameters and the measurement
noise. The proposed method is also suitable for the measured S11

and S21 with the different phase shift. This method will find many
practical applications for the tuning of coupled resonator bandpass
filters (as in [14–18]), dual-band resonator bandpass filters (as in [19–
22]), and dual-mode bandpass filters (as in [23, 24]), which are designed
according to the coupling matrix. It is expected that the proposed CM
extraction method can significantly accelerate the tuning of high-order
cross-coupled resonator filters to obtain the required filter response
and a physical realization. Two examples of the CM extraction are
provided to show the validity of the method.

2. THEORY

In a lossless circuit model (see Fig. 1) suitable for the CM synthesis [12],
the I/O couplings are represented by a simple inverter without any
embedded transmission lines at I/O ports, which shift the reference
planes. In a physical model (see Fig. 2), however, three nonideal
effects exist: 1) effects of phase shifts due to embedded transmission
lines lin, lout; 2) a constant phase loading caused by the higher order
modes at the vicinity of I/O coupling structures; and 3) the loss effect
associated to each resonator R1, R2, . . . , RN . These three nonideal
effects need to be removed from the raw measured data of a physical
filter model before the CM extraction.
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Figure 1. Model of a lossless cross-coupled resonator bandpass filter.
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Figure 2. Model of a general coupled resonator bandpass filter.
Embedded transmission lines and losses are taken into account by the
model.

2.1. Calculation of Characteristic Polynomials

S21 and S11 can be approximated by three characteristic polynomials
F , P and E as [1–5]

S11(s′) =
F (s′)
E(s′)

=

N∑
k=0

a
(1)
k s

′k

N∑
k=0

bks
′k

, S21(s′) =
P (s′)
E(s′)

=

nz∑
k=0

a
(2)
k s′k

N∑
k=0

bks′k
. (1)

where, N is the filter order and nz is the number of finite transmission
zeros. A modified frequency transformation used for converting the
measured S-parameters from the bandpass domain f to the normalized
lowpass domain s′ is adopted here as [4]

s′ =
f0

BW

1
Qu

+ j
f0

BW

(
f

f0
− f0

f

)
. (2)

It is usually well verified for a very large class of microwave filters
that the unloaded quality factors Qu of all resonators are nearly the
same. So, the approximation here adopted is that Qu of each resonator
is assumed to be the same. BW and f0 are bandwidth and center
frequency of the filter, respectively. In this way the equivalent circuit
to be synthesized in the s′ domain from the computed polynomials is
a lossless circuit [4]. The formulation of the Cauchy method allows the
evaluation of the complex coefficients a

(1)
k , a

(2)
k and bk (and then F ,

P and E) in one step by solving the following the (over determined)
system [5]:

[
VN 0Ns×(nz+1) −S11VN

0Ns×(N+1) Vnz −S21VN

] 


a(1)

a(2)

b


 = 0 (3)
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where a(1) = [a(1)
0 , . . . , a

(1)
N ]T , a(2) = [a(2)

0 , . . . , a
(2)
nz ]T , b = [b0, . . . , bN ]T ,

S21 = diag{S21(s′i)}i=1,...,Ns, S11 = diag{S11(s′i)}i=1,...,Ns and Vr ∈
CNs×(r+1) is a vandermonde matrix with elements Vi,k = (s′i)

k−1, k =
1, . . . , r + 1. The S21(s′i) and S11(s′i) are the measured or simulated
S-parameters at frequency points s′i (i = 1, 2, . . . , Ns). Ns is the
number of frequency points. Frequency points s′i maps into the physical
frequency points fi. Note that, the measured (or simulated) S21 and
S11 samples in (3) should be chosen around the passband in Cauchy
method; in fact it is not convenient to consider frequency points too
much distant from the passband because the accuracy of the model may
be reduced by second order effects such as the frequency-dependent
couplings.

It must be observed that the polynomials F , P and E solved
in one step [5] are not suitable for the CM extraction by well-known
established technique [12], before the phase shift of the measured S-
parameters are removed. Failing to remove the phase shift will leads
to an incorrect CM extraction.

2.2. Removal of the Phase Shift and Extraction of Unloaded
Q and Coupling Matrix

In a physical filter model, there is always a section of transmission
line at I/O ports, which shifts the reference planes. A phase offset ϕ
connected to each port can be very well approximated by the following
function in a wide frequency range [7]:

ϕ = ϕ0 + β∆l (4)
Here, the frequency invariant constant term ϕ0 is called the phase
loading, which is caused by the higher order modes in the vicinity
of the I/O coupling elements; β is the propagation constant of the
transmission line and ∆l is an equivalent length of the transmission
line. For a typical transmission line, β∆l can be expressed as β∆l =
2πf∆l

√
εeff µ, where εeff is the effective dielectric constant of the

transmission line. β∆l can be easily derived as β∆l = fθ0/f0, where
θ0 is the equivalent electrical length of the transmission line at f0 in
radians. The following phase shift caused by the phase loading and
the transmission lines should be removed from the measured S11 and
S21, respectively

∆φS11 = −2(ϕ01 + fθ01/f0),
∆φS21 = −(ϕ01 + ϕ02 + fθ02/f0 + fθ01/f0).

(5)

where ϕ01 and ϕ02 are the phase loading at I/O ports, respectively.
θ01 = 2πf0lin

√
εeff µ and θ02 = 2πf0lout

√
εeff µ are the equivalent

electrical length of the transmission line at I/O ports, respectively.
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A normalized N + 2 coupling matrix [M ′] including losses can be
expressed as

[M ′] = [M ]− j[G]. (6)

Here, [M ] represents the coupling between coupled resonators, and [G]
is the diagonal matrix [G] = diag[0, G1, . . . , GN , 0], which represents
the loss of the filter. The loss factor Gi (i = 1, 2, . . . , N) for the
ith resonator can be evaluated by Gi = BW/(f0Qu). Once [M ′] is
extracted, the filter response including losses can be obtained via the
following equation

S21 = −2j[A−1]N+2,1, S11 = 1 + 2j[A−1]1,1. (7)

Here, A = [ΩU−jR+M ′], Ω, [R] and [U ] can refer to [25]. Equation (7)
allows the calculation of a lossy filter response, which is different from
that given in [25]. Also, as Qu approach infinity, [M ′] degenerates to
[M ], and Equation (7) is exactly the same as that given in [25], which
is suitable for the lossless filter response.

ϕ01, θ01, ϕ02, θ02 and Qu are the unknown parameters to be
optimized. Once they are known, the phase shift of the measured
S-parameters can be removed using (5), and then the characteristic
polynomials F , P and E are solved in one step described in Section 2.1;
the next step consists of extracting the coupling matrix [M ] from the
characteristic polynomials by well-known established technique [12]
and then [M ′] according to (6). To show the differences between the
designed CM and the extracted CM, a series of the same similarity
transformations as the designed one requires to be applied to the
extracted (N + 2) fully canonical coupling matrix. As the result, the
coupling matrix [M ] is extracted, which reflects the actual couplings
of a given filter response. The extracted S-parameters are obtained
using (7). Five unknown parameters ϕ01, θ01, ϕ02, θ02 and Qu are
obtained by minimize the following objective error function using
genetic algorithm:

F =
Ns∑

i=1

[|Sext
21 (fi)| − |Smea

21 (fi)|]2 + [|Sext
11 (fi)| − |Smea

11 (fi)|]2. (8)

where Sext
21 (fi) and Sext

11 (fi) are the extracted S-parameters, and
Smea

21 (fi) and Smea
11 (fi) are the measured S-parameters.

GA can be used to solve the global minimum value of a
multivariate function. In this paper, the GA toolbox for Matlab
provided by the University of Sheffield [26] is chosen to minimize the
error function in (8).
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3. EXAMPLES

3.1. Simulated Seventh-order Bandpass Filter (Filter 1)

The technique presented here is first applied to the simulated S-
parameters of seventh-order filter with f0 = 850MHz, nz = 2 and
BW = 40MHz (filter 1), which is designed on a Rogers RO3010
substrate with a relative dielectric constant of 10.2, a thickness of
1.27mm, and a loss tangent of 0.0023. Physical dimensions of filter
1 are shown in Fig. 3.

Figure 3. Physical dimensions of filter 1.

The filter has been simulated using a full-wave simulator IE3D.
The loss factors (conductor loss and dielectric loss) are included in
the simulated response. The proposed algorithm has been applied
with N = 7, nz = 2, Ns = 71 (frequency interval 820–890MHz).
ϕ01 = 1.0957, θ01 = 0.8684, ϕ02 = 1.1251, θ02 = 0.7725 and
Qu = 182.66 has been obtained by optimization.

The characteristic polynomials F , P and E in the s′ domain are
obtained as

P = [−0.1182− 0.0050i − 0.0016 + 0.0395i − 0.2215− 0.0130i]
F = [1.0 − 0.0439− 0.2466i 2.0741 + 0.1009i

−0.0865− 0.1577i 1.2909 + 0.1659i
−0.0220 + 0.1060i 0.20 + 0.0467i 0.0102 + 0.0342i] (9)

E = [1.0041− 0.0066i 1.7718− 0.2560i 3.6429− 0.5333i
3.8800− 0.6685i 3.6914− 0.6950i 2.2676− 0.3544i
0.9995− 0.15557i 0.2257− 0.0194i].

From these polynomials, the normalized N + 2 coupling matrix
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[M ] has been extracted as

M =




0 0.9522 0 0 0
0.9522 0.0851 0.8048 0 0

0 0.8048 −0.1139 0.5935 0
0 0 0.5935 −0.0842 0.5365
0 0 0 0.5365 0.0701
0 0 0 −0.0874 0.7041
0 0 0 −0.1717 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−0.0847 −0.1717 0 0
0.07041 0 0 0
−0.0921 0.6139 0 0
0.6139 −0.1041 0.8127 0

0 0.8127 −0.0117 0.9290
0 0 0.9290 0




(10)

Figure 4 shows the original phase responses of the filter 1 obtained
by an EM simulation and the one with phase change removed by (5),
illustrating the asymptotic behaviour of the S11 phase after removing
the phase change. The counter-symmetrical asymptotic behaviour of
the S11 phase outside of the passband has also been reported in [7],
which satisfy the phase characteristic of the circuit model in [12].

Figure 4. The S11 phase of filter 1 with and without removing the
phase change.
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Figure 5. The simulated and the extracted S-parameters of filter 1.

In Fig. 5, the original simulated S-parameters are compared with
those calculated by the extracted CM. Very good agreement between
the simulated and extracted response can be observed.

3.2. Fabricated Fourth-order Bandpass Filter (Filter 2)

In the second example, the parameter-extraction procedure will be
applied in the measured S-parameters of a fourth-order filter with
f0 = 2.13GHz, nz = 2 and BW = 60 MHz (filter 2).

The filter 2 is fabricated on a Rogers RT/duroid 5880 substrate
with a relative dielectric constant of 2.2, a thickness of 0.508mm, and
a loss tangent of 0.0009, shown in Fig. 6.

(a) (b)

Figure 6. (a) Physical dimensions and (b) photograph of the
fabricated filter 2.
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The proposed algorithm has been applied with N = 4, nz = 2,
Ns = 37 (frequency interval 2.04–2.22GHz). ϕ01 = 0.8354, θ01 =
1.8375, ϕ02 = 0.6873, θ02 = 2.0857 and Qu = 162.75 has been obtained
by optimization. The characteristic polynomials F , P and E in the s′
domain are obtained as

P =[0.0864− 0.4428i 0.0233 + 0.0003i 0.4878− 2.4045i]
F =[1 − 0.0058− 0.8888i 1.6231− 0.0131i

− 0.0493− 0.8369i 0.5995 + 0.1116i]
E =[1.0245− 0.0184i 2.0384− 0.9328i

3.8275− 1.5521i 3.4865− 2.0288i 2.2074− 1.1819i]

(11)

From these polynomials, the normalized N + 2 coupling matrix
[M ] has been extracted as

M =




0 1.0177 0 0 0 0
1.0177 −0.2095 1.0183 0 −0.2136 0

0 1.0183 −0.1928 0.9107 0.1223 0
0 0 0.9107 −0.3373 1.0297 0
0 −0.2136 0.1223 1.0297 −0.1602 1.0061
0 0 0 0 1.0061 0




(12)

In Fig. 7, the original measured S-parameters are compared with
those calculated by the extracted CM. As can be seen, the location
of the transmission zeros and the in-band return losses have been
accurately modeled. The measured frequency response has somewhat
less attenuation at both sides out-of-passband than the extraction one,
which is due to second order effects of a physical filter.

Figure 7. The measured and the extracted S-parameters of fabricated
filter 2.
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4. CONCLUSION

A technique for the accurate extraction of the CM and the unloaded
Q of lossy coupled resonator filters is presented. This technique can
be applied to any measured filter response as long as the unloaded
Q for each resonator is nearly the same. To make the characteristic
polynomials (solved in one step by Cauchy method) to satisfy the
circuit model in [12], the phase-shift effects of the measured (or
electromagnetic simulated) S-parameters are removed for the first time
by optimization, and the unloaded Q is also obtained simultaneously
by optimization. To illustrate the validation of the proposed technique,
two application examples are provided; one deals with simulated data
and the other one uses measured data. The proposed extraction
technique is a valuable tool in computer aided tuning of microwave
filters.
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