Vol. 23
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-04-28
Ultra-Wide Bandwidth Microstrip Monopole Antenna by Using Electromagnetic Band-Gap Structures
By
Progress In Electromagnetics Research Letters, Vol. 23, 109-118, 2011
Abstract
A novel compact design for ultra-wide bandwidth (UWB) planar monopole antenna is presented in this paper. The basis for achieving the UWB operation is through using semicircular microstrip monopole antenna with modified ground plane in the form of semi circular umbrella like shape. This shape produces bandwidth ranging from 3 to 35 GHz with discontinuities from 7 GHz to 10 GHz, from 12.5 GHz to 17.5 GHz and from 22 GHz to 40 GHz. The antenna size is reduced by 27% relative to the size of conventional rectangular monopole patch antenna. Metamaterial structures are used for further antenna performance improvement. Two types of metamaterial namely EBG and DGS are studied. First, embedding metallo EBG (EMEBG) is used to eliminate ripples in the operating band and also further reducing the antenna size by more than 30% as compared to the proposed patch. The antenna design provides an impedance bandwidth of more than 33 GHz. Second, four arms spiral defected ground structure (SDGS) is used as a ground plane with four arms to further improve the antenna performance. The SAMC reduced the antenna size by more than 48% as compared to the proposed antenna patch, increased bandwidth, and decreased the cross polarization effect. Finally, embedded EBG together with SDGS ground plane are studied to take advantages of both techniques.
Citation
Dalia Mohammed Nasha Elsheakh, Hala Elsadek, Esmat A. F. Abdallah, Hadia El-Hennawy, and Magdy F. Iskander, "Ultra-Wide Bandwidth Microstrip Monopole Antenna by Using Electromagnetic Band-Gap Structures," Progress In Electromagnetics Research Letters, Vol. 23, 109-118, 2011.
doi:10.2528/PIERL11020805
References

1. FCC NEWS (FCC 02-48), FCC News Release, "New public safety applications and broadband internet access among uses envisioned by FCC authorization of ultra-wideband technology,", Feb. 14, 2002.
doi:10.1109/LAWP.2009.2025972

2. Ojaroudi, M., C. Ghobadi, and J. Nourinia, "Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application," IEEE Antennas and Wireless Propag. Letters, Vol. 8, No. 1, 728-731, 2009.
doi:10.1049/el:20073292

3. Ray, , K. P., Y. Ranga, and P. Gabhale, "Printed square monopole antenna with semicircular base for ultra-wide bandwidth," Electronics Letters, Vol. 43, 13-14, Mar. 2007.

4. Elsheakh, D. N., H. A. Elsadek, E. A. Abdallah, H. Elhenawy, and M. F. Iskander, "Ultra-wide bandwidth umbrella shaped microstrip monopole antenna using spiral artificial magnetic conductor (SAMC)," IEEE Antennas and Wireless Propag. Letters, Vol. 8, 1225-1229, 2009.
doi:10.2528/PIERL09061104

5. Nashaat Elsheakh, D. M., H. A. Elsadek, E. A.-F. Abdallah, M. F. Iskander, and H. Elhenawy, "Ultra-wideband and miniaturization of the conventional inset feed microstrip patch with modified ground plane for wireless applications," Progress In Electromagnetics Research Letters, Vol. 10, 171-184, 2009.
doi:10.1109/22.798001

6. Sievenpiper, D. and et al, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.2528/PIER07072302

7. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIERL08050606

8. Danideh, A., R. Sadeghi Fakhr, and H. R. Hassani, "Wideband co-planar microstrip patch antenna," Progress In Electromagnetics Research Letters, Vol. 4, 81-89, 2008.
doi:10.2528/PIERC08031005

9. Azari, A. and J. Rowhani, "Ultra wideband fractal microstrip antenna design," Progress In Electromagnetic Research C, Vol. 2, 7-12, 2008.

10. Hosseini, M., A. Pirhadi, and M. Hakkak, "Design of an AMC with little sensitivity to the angle of incident and with compact size," Proceedings of the 2006 Antennas & Propagation Conference, 301-304, UK, Apr. 2006.
doi:10.1163/156939306776930330

11. Yang, F., V. Demir, D. A. Elsherbeni, A. Z. Elsherbeni, and A. A. Eldek, "Enhancement of printed dipole antennas characteristics using semi-EBG ground plane," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 993-1006, 2006.
doi:10.1163/156939306777442908

12. Yang, R., Y. Xie, P. Wang, and L. Li, "Microstrip antennas with left-handed materials substrates," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1221-1233, 2006.
doi:10.2528/PIER06011701

13. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:2006

14. Yang, F. and Y. R.-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.