Vol. 17
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-03-14
GPU Approach for Hertzian Potential Formulation Tool Oriented on Electromagnetic Nanodevices
By
Progress In Electromagnetics Research M, Vol. 17, 135-150, 2011
Abstract
The time domain modeling and simulation of electromagnetic (EM) waves interaction with nanodevices, at high spatial and time resolution, requires high computational power. For the first time, in this paper we present an effective implementation of the Hertzian Potential Formulation (HPF) on the Graphics Processing Units (GPUs), through the NVIDIA's CUDA (Compute Unified Device Architecture) programming model. It accelerates the nanodevice EM simulations at nanometer scale harnessing the massive parallelism of the GPU based systems. This study is useful for similar electromagnetic codes including the Finite Difference approaches. The results demonstrate that this GPU tool outperforms the CPU based HPF implementation, reaching a speedup from 30× to 70×.
Citation
Daniele Tartarini, and Alessandro Massaro, "GPU Approach for Hertzian Potential Formulation Tool Oriented on Electromagnetic Nanodevices," Progress In Electromagnetics Research M, Vol. 17, 135-150, 2011.
doi:10.2528/PIERM11020309
References

1. Massaro, A., M. Grande, R. Cingolani, A. Passaseo, and M. De Vittorio, "Design and modelling of tapered waveguide for photonic crystal slab coupling by using time-domain Hertzian potential formulation," Opt. Express, Vol. 15, No. 25, 16484-16499, 2007.
doi:10.1364/OE.15.016484

2. VanRoey, J., J. van Derdonk, and P. Lagasse, "Beam-propagation method: Analysis and assessment," J. Opt. Soc. Am., Vol. 71, 803-810, 1981.
doi:10.1364/JOSA.71.000803

3. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagation, Vol. 14, No. 8, 302-307, 1966.

4. Massaro, A. and T. Rozzi, "Rigorous time-domain analysis of dielectric optical waveguides using Hertzian potentials formulation," Opt. Express, Vol. 14, No. 5, 2027-2036, 2006.
doi:10.1364/OE.14.002027

5. Massaro, A., V. Tasco, M. T. Todaro, R. Cingolani, M. De Vittorio, and A. Passaseo, "Scalar time domain modeling and coupling of second harmonic generation process in gaas discontinuous optical waveguides," Opt. Express, Vol. 16, No. 19, 14496-14510, 2008.
doi:10.1364/OE.16.014496

6. Owens, J. D., M. Houston, et al. "GPU computing," Proceedings of the IEEE, Vol. 96, No. 5, 879-899, May 2008.
doi:10.1109/JPROC.2008.917757

7. Nickolls, J. and W. J. Dally, "The GPU computing era," IEEE Micro., Vol. 30, 56-69, 2010.
doi:10.1109/MM.2010.41

8. Huang, S., S. Xiao, and W. Feng, "On the energy efficiency of graphics processing units for scientific computing," IEEE International Symposium on Parallel & Distributed Processing, 1-8, 2009.
doi:10.1109/IPDPS.2009.5160980

9. Krakiwsky, S. E., L. E. Turner, and M. M. Okoniewski, "Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU)," IEEE MTT-S Int. Microwave Symp. Digest, 1033-1036, 2004.

10. Peng, S. X. and Z. P. Nie, "Acceleration of the method of moments calculations by using graphics processing units," IEEE Trans. Antennas and Propagation, Vol. 56, No. 7, 2130-2133, Jul. 2008.
doi:10.1109/TAP.2008.924768

11. Zainud-Deen, S. H., E. El-Deen, M. S. Ibrahim, K. H. Awadalla, and A. Z. Botros, "Electromagnetic scattering using gpu-based ¯nite di®erence frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.
doi:10.2528/PIERB09060703

12. Jiang, , W. Q., M. Zhang, and Y. Wang, "CUDA-based radiative transfer method with application to the EM scattering from a twolayer canopy model," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2509-2521, 2010.
doi:10.1163/156939310793675772

13. Xu, K., Z. H. Fan, D. Z. Ding, and R. S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

14. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat., Vol. 23, 377-382, 1981.
doi:10.1109/TEMC.1981.303970

15. Taflove, A. and S. C. Hagness, Computational Electrody-namic: The Finite-difference Time-domain Method, 2nd Ed., Chaps. 2, 4, and 7, Arthec House Publishers, London, 2000.

16. Lindholm, E, J. Nickolls, S. Oberman, and J. Montrym, "NVIDIA Tesla: A unified graphics and computing architecture," IEEE Micro., Vol. 28, 39-55, 2008.
doi:10.1109/MM.2008.31

., NVIDIA CUDA C Programming guide v.3.2. Nvidia Corp., 2010.

18., NVIDIA CUDA C Best Practices guide v.3.2. Nvidia Corp., 2010.

19. Patterson, D. A. and J. L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface," Morgan Kaufmann, 2008.

20. Kirk, D. B. and W.-M. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Morgan Kaufmann, 2010.

21. Ryoo , S., C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-M. W. Hwu, "Optimization principles and application performance evaluation of a multithreaded GPU using CUDA," Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, 73-82, New York, USA, 2008.

22. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBM Journal of Research and Development, Vol. 11, No. 2, 215-234, 1967.
doi:10.1147/rd.112.0215