
Progress In Electromagnetics Research M, Vol. 17, 135–150, 2011

GPU APPROACH FOR HERTZIAN POTENTIAL FOR-
MULATION TOOL ORIENTED FOR ELECTROMAG-
NETIC NANODEVICES

D. Tartarini

Scuola Superiore ISUFI
University of Salento, via Arnesano 16, Lecce 73100, Italy

A. Massaro

Center of Bio-Molecular Nanotechnology
Italian Institute of Technology IIT
Via Barsanti, Arnesano, Lecce 73010, Italy

Abstract—The time domain modeling and simulation of electromag-
netic (EM) waves interaction with nanodevices, at high spatial and
time resolution, requires high computational power. For the first time,
in this paper we present an effective implementation of the Hertzian Po-
tential Formulation (HPF) on the Graphics Processing Units (GPUs),
through the NVIDIA’s CUDA (Compute Unified Device Architecture)
programming model. It accelerates the nanodevice EM simulations at
nanometer scale harnessing the massive parallelism of the GPU based
systems. This study is useful for similar electromagnetic codes includ-
ing the Finite Difference approaches. The results demonstrate that this
GPU tool outperforms the CPU based HPF implementation, reaching
a speedup from 30× to 70×.

1. INTRODUCTION

Having a high resolution in space and in time is fundamental to
generating numerically accurate simulations of electromagnetic (EM)
wave interactions in nanodevices [1]. It is quite common to design
dielectric devices embodying nanoparticles, quantum dots, nanorods or
other nano discontinuities. The interest is in simulating at nanometer
resolution the behavior of these devices with an overall size of tens
or hundreds of nanometers. In particular the critical configurations

Received 3 February 2011, Accepted 8 March 2011, Scheduled 14 March 2011
Corresponding author: Daniele Tartarini (daniele.tartarini@gmail.com).

136 Tartarini and Massaro

where the accuracy could fail at optical frequencies are: nanodefects,
high bulk dimension in bulk-type structures, nanostructures in long
optical fiber, singularity points, very thin dielectric layer in very long
dielectric structure, dielectric discontinuities.

Traditional numerical methods such as the Finite Element Method
(FEM), the Beam Propagation Method (BPM) [2], and the widely
used FDTD (Finite Difference Time Domain) by Yee [3], require huge
computational power to achieve the required level of accuracy of the
EM solution.

Recently a new method, the HPF (Hertzian Potential Formula-
tion) [1, 4, 5], has been proposed for the simulation of full-wave prop-
agation and reflection in the time domain. The main advantage of
the HPF method is that it is computationally more efficient than the
Yee FDTD [3]. In the one-dimensional domain it performs half of
the computation, needing to solve only two instead of the four finite-
difference equations of the Yee’s algorithm in the two-dimensional
case [1]. Notwithstanding, accurate nanoscale simulations require great
computing power that can be found not only in the expensive HPC
(High Performance Computing) systems based on CPUs but also in
the GPU (Graphics Processing Units) based solutions.

In fact, a recent extraordinary evolution, from simple hardwired
Video Graphic Array (VGA) controllers to highly multithreaded
multiprocessors optimized for visual computing, made the GPUs
mature massive parallel multiprocessors. In particular, they
adopted wider bandwidth and a more general-purpose architecture
that allows their usage as HPC systems with very low power
consumption [8]. Moreover, given the wide integration in commercial
off the shelf computers, they represent a powerful and cheap solution
to computational science. GPU computing is being exploited in many
scientific applications [6–8] with interesting results in the EM field and
nanotechnology [9, 10]. Much published work on EM computational
simulations using the GPUs confirms the growing interest in this
powerful technology of the computational EM community [11–13].

In this work we developed on GPUs a HPF based tool to accelerate
the simulation of EM wave interaction with structures at nanoscale
resolution.

The proposed HPF implementation is important in order to
predict the real behavior of a nanodevice and can be applied for the
EM characterization of nanosensors. The time-domain HPF algorithm
has been fully implemented on GPU, through a new computational
pattern, to exploit their high computational power.

Numerical results demonstrate that the proposed GPU-based
HPF can significantly improve the computational efficiency. The

Progress In Electromagnetics Research M, Vol. 17, 2011 137

core of the HPF algorithm presents a data parallelism that could
harness the massive parallelism of the many-cores structure of the
GPUs. In fact the parallel version of HPF, implemented in this work
through the NVIDIA CUDA (Compute Unified Device Architecture)
architecture, achieves an overall speedup factor ranging from 30× to
70×, depending on the geometrical configuration and single/double
precision used.

In the remainder, this paper is organized as follows: Section 2
gives a brief description of the HPF method and the serial algorithm;
Section 3 describes the GPU CUDA hardware architecture, the
parallelization strategy of the CUDA implementation of HPF and the
computational pattern; Section 4 describes the numerical results and
finally Section 5 closes with the conclusions.

2. THE HPF METHOD AND THE THEORY
FORMULATION

In the new HPF all the possible electromagnetic field components,
which can describe the scattering and radiation effect of a nanodefect,
are defined by the Hertzian electric and magnetic vectors as:

E = ∇∇ ·Πe − εµ
∂2

∂t2
Πe − µ

∂

∂t
(∇×Πh)

H = ∇∇ ·Πh − εµ
∂2

∂t2
Πh − ε

∂

∂t
(∇×Πe)

(1)

The potential Πe is often called the electric Hertzian potential since
it is generated from electric currents and satisfies the same boundary
conditions as the electric field. In the same manner Πh is often referred
to as the magnetic Hertzian potential. By using the Hertzian scalar
potentials ψe and ψh, the electromagnetic fields are then determined
by the following expressions:

E=x̂Ae + ŷBe + ẑCe − x̂µε∂2
t ψe − ŷµε∂2

t ψe − ẑµε∂2
t ψe

− µ∂t(x̂(∂yψ
h − ∂zψ

h)+ŷ(∂zψ
h−∂xψh)+ẑ(∂xψh−∂yψ

h))

H=x̂Ah + ŷBh + ẑCh − x̂µε∂2
t ψh − ŷµε∂2

t ψh − ẑµε∂2
t ψh

+ µ∂t(x̂(∂yψ
e−∂zψ

e)+ŷ(∂zψ
e−∂xψe)+ẑ(∂xψe−∂yψ

e))

(2)

Ae,h =∂2
xψe,h + ∂yxψe,h + ∂zxψe,h

Be,h =∂xyψ
e,h + ∂2

yψe,h + ∂zyψ
e,h

Ce,h =∂xyψ
e,h + ∂yzψ

e,h + ∂2
zψe,h

(3)

138 Tartarini and Massaro

The HPF model proposed is iterative, i.e., at each iteration time step
the electromagnetic field information of each point of the structure
must be properly updated.

HPF Sequential Algorithm

(1) Setting permittivity mask parameters α(j, l), β(j, l), γ(j, l), σ(j, l)
for device and nanostructures†.

(2) Initialize data for Mur ABC conditions
(3) for t = 0 → max timestep
(4) for l = 0 → length
(5) for j = 0 → width
(6) compute source values and ABC Mur conditions [14].
(7) update EM field: ψe,h(j, l, t) = α(j, l)ψe,h(j, l, t − 1) +

β(j, l)ψe,h(j, l, t− 2) + γ(j, l)ψe,h(j, l + 1, t− 1) + σ(j, l)ψe,h(j, l−
1, t− 1)

(8) end for
(9) end for
(10) end for.

The potentials ψe,h(x, y, z, t) represent the solutions of the homoge-
neous wave equations for a non-dissipative medium:

∇2ψe,h(x, y, z, t)− µε
∂2ψe,h(x, y, z, t)

∂t2
= 0 (4)

having as solution in the 2D space the following iterative form:

ψt+1(j)=ψt(j+1)
(

b

a

)
+ψt(j)

(
2a−2b

a

)
+ψt−1(j)(−1)+ψt(j−1)

(
b

a

)
(5)

and for a dissipative medium:

∇2ψe,h(x, y, z, t)− µε
∂2ψe,h(x, y, z, t)

∂t2
− µσ

∂ψe,h(x, y, z, t)
∂t

= 0 (6)

having as solution in the 2D space the following iterative form:

ψt+1(j)=ψt(j+1)
(

b

a′

)
+ψt(j)

(
2a′−2b

a′

)
+ψt−1(j)(−1)+ψt(j−1)

(
b

a′

)
(7)

where ∆ε represents the variation of permittivity ε [4] (ε is the
electrical permittivity expressed in farads/meter), µ is magnetic
permeability (henrys/meter), and σ is the electric conductivity
(siemens/meter) which is zero in a perfect dielectric.
† Constants correspond to those in Eqs. (5) (7) where: α(j, l) = (2a − 2b)/aβ(j, l) =
−1γ(j, l) = σ(j, l) = b/a. [14, 15].

Progress In Electromagnetics Research M, Vol. 17, 2011 139

The proposed HPF formulation is suitable for the following
physical problems:

-Maxwell equations solution on dielectric discontinuities: this kind
of problem usually is solved by numerical and analytical approxima-
tions (such as effective dielectric constant (EDC) method [1]). By
means of the EDC approach (analytical approximation) the dielectric
multilayer structure is considered as a single medium with an effec-
tive refractive index. In this case the analytical approximation does
not consider the imperfection effects of the layer roughness (scattering,
reflection, etc.) which are very important in a complex 3D structure
with irregular dielectric profile.

-Bulk dimension in bulk-type structures: common integrated
structures are growth on a substrate material which is characterized by
a large thickness compared with the thickness of the guiding dielectric
layer. Usually an EM simulator takes into account a small bulk
thickness not considering the real power losses of the bulk material.
The HPF combined with analytical approaches allows to overcome the
problem of simulation associated with the dimension of the bulk [1].

-Nanostructures in long optical fiber: nanostructures such as
photonic crystal can be realized in optical fiber. Photonic crystal
fiber are very long (of the order of the meter), and so only lengths
of few hundred of microns (high aspect ratio) can be simulated not
considering the distributed effect on the total length and the radius
of curvature effect (field losses) as in the real case of the experimental
setup.

-Singularity points: in order to evaluate the near field around a
singularity point such as dielectric corners, it is important in this case
to discretize the volume which embeds the corners in very fine mesh
size. A non uniform mesh (sub-griding) can solve the problem related
to the accuracy of the solution near a singularity region, but for a large
number of 3D singularity points arranged in complex 3D structure the
computational cost becomes very high.

-Nanodefects: nanodefects in optical waveguide are actually
used in many optical applications in which the combined effect of
nanodefects is required in order to enhance the optical intensity.
Several arrangements of nanostructures in semiconductor, such as
quantum dots and point defects in crystals, characterize the light
coupling of optical waveguides. The coupling behavior of these
imperfections can be analyzed with accuracy only for a small number of
defects. The combined coupling effect of more defects can be simulated
by means of a proper GPU implementation.

The numerical tool presented in this work, based on HPF [1, 4, 5],
overcomes these limits (big RAM memory, and high aspect ratio) by

140 Tartarini and Massaro

combining the accuracy of the method with the GPU implementation.
The HPF approach is intrinsically well suited to the applications of
the concept of circuit analysis and synthesis, and represents a novel
alternative method in the analysis of nanodefects in optical waveguide,
by providing a good convergent numerical solution. This circuital
analogy allows to model nanodefects in dielectric material as a set
of transmission line circuits which take into account the dielectric
interfaces along the propagating direction as voltage and current
generators [1, 4, 5]. We show as an example in this work the wavefront
propagation in a very long material characterized by nanodefects.
The model highlights the accuracy of method for different patterns
of nanodefects.

3. THE PARALLELIZATION STRATEGY FOR HPF
WITH CUDA PROGRAMMING MODEL

3.1. The GPU Architecture and CUDA Programming
Model

To completely appreciate the performance and the power of the GPU
computing, it is useful to properly comprehend how the graphics
processors provide the massive parallelism and why the CUDA
programming model is so effective. From the hardware point of view, a
GPU system, since the Tesla architecture, is a multiprocessor made of
an array of tens of multiprocessors, called Streaming Multiprocessors
(SMs) [16]. Basically, each SM is built up of two Special Function Unit
(SFU) and eight scalar processor cores, called Streaming Processors
(SPs). These SMs provide each one of their SPs with one 32-bit register
file and low latency on-chip shared memory. Since this architecture
embeds also multithreading and scheduling functionality in hardware,
thousands of threads run on hundreds of cores very efficiently, in a
scalable and transparent way.

To harness this multiprocessors massive parallelism, NVIDIA
conceived the CUDA [17], a software platform with a new powerful
API, which extends the C/C++ language with a scalable parallel
programming model. It has an SPMD (Single Program Multiple
Data) [19] software style that allows writing serial code for one thread,
whilst it is instanced and executed by thousands of threads in parallel.
Furthermore the programmer arranges the threads in a two level
architecture provided by CUDA: three-dimensional blocks of threads
organized into a two-dimensional grid of blocks. This architecture
drives the partition of the problem into sub-problems, which can
be solved concurrently by independent blocks of threads, and into
smaller pieces that can be computed in parallel by each thread. The

Progress In Electromagnetics Research M, Vol. 17, 2011 141

e,h
(j, l, t -2)

e,h(j, l+1, t-1)
e,h

 (j, l-1, t-1)

e,h
(j, l, t)

ψ ψ

ψ

ψ

Figure 1. HPF algorithm stencil
showing data dependency for the
ψe,h update.

GPU Slice

l

j

Device
Domain

Thread Block 0

Thread Block 1

Thread Block 2

Thread Block M

Source

G
P
U
 S

lic
e

Figure 2. Domain decomposi-
tion scheme: device domain is di-
vided in slices provided to GPU’s
kernel. The data domain is fur-
ther partitioned in blocks whose
threads run HPF concurrently.

programmer codes in the application the size of the blocks by taking
into account that all the threads of a block will reside, with their own
memory context, in a SM’s registers and memories [18]. Furthermore
a smart choice of blocks size and a proper usage of the memory
hierarchy can improve performance, as we will show in the Numerical
results section. A good introduction of the thread model and hardware
implementation of CUDA can be found in [16–20].

In this work we tested our implementation of the tool on a GPU
system of the Tesla generation: An NVIDIA GTX295 with 30 SMs
for each of its 2 GPUs. It is worth noting that independently of the
underlying hardware, a CUDA application is able to run transparently
on every GPU.

3.2. The Parallelization Strategy and Domain
Decomposition for HPF

The simulation of the EM device behavior requires the domain
discretization into a two-dimensional grid of size nx × ny points
(represented by cells), which depends on the geometry and on the
spatial resolution needed. In fact, for a given device size, the better is
the resolution the greater is the amount of the grid points. As shown in
Fig. 2, the EM source is at the top edge of the device and the wavefront
propagates along the l-direction, according to the assigned coordinate
system. From a computational point of view, the heaviest part of the

142 Tartarini and Massaro

Grid

. . .

Block 1

Block 0 Block m Block 1 Block 2

. . .

Thread 0 Thread m/N Thread 1 Thread 2 Thread 3 Thread 4

Figure 3. The CUDA organization of the threads in grid and blocks.
In HPF a thread updates all the points along a given j-coordinate
for each time steps. Therefore they are deployed along a linear (one-
dimensional) grid of blocks.

HPF algorithm, which benefits from the parallel computing on GPU, is
the updating of the EM field, (see the row (7) in algorithm reported in
HPF sequential algorithm in Section 2). Therefore our parallelization
strategy assigns to each thread the updating in time of the EM field of
the grid points. It takes into account the constraints of HPF algorithm,
in time and space, given by the data dependency scheme shown in
Fig. 1 and Fig. 6. Each update of the ψe,h(j, l, t), uses the values of
the previous two time steps, ψe,h(j, l, t − 1), ψe,h(j, l, t − 2), and the
points one position back and forward in the wave-front propagation
direction, ψe,h(j, l − 1, t− 1), ψe,h(j, l + 1, t− 1). Therefore the points
belonging to a line parallel to the wave-front direction are updated
consecutively, along the ascending l-coordinate. Moreover these lines
are independent of each other and are updated in parallel by concurrent
threads, one thread per line (Fig. 2).

To exploit this parallelism, in our CUDA implementation the
kernel is executed by a one-dimensional grid of one-dimensional blocks
of threads, (Fig. 3). Therefore each thread of a thread block has the
task to update only the points along a j-coordinate.

Furthermore, in order to ensure scalability and to deal with the
memory resource constraints, the device domain is partitioned into
slices (called GPU slices) that, in their turn, are assigned to a CUDA

Progress In Electromagnetics Research M, Vol. 17, 2011 143

grid of thread blocks (Fig. 2). The evolution in time of the ψe,h is thus
computed by thousands of independent threads that load and store
data from the GPU DRAM global memory.

Even though GPU has huge computational power and a wide
bandwidth toward its DRAM memory, the performances are often
affected by the big latency of global memory access and by the
bandwidth [21].

In the case of the HPF algorithm (see row (7)), each update of
ψe,h in a point requires four read accesses to ψe,h values in global
memory, four accesses to read the permittivity mask values and one
access to store the result. The number of clock cycles wasted in
waiting data from global memory is at least one order of magnitude
greater than those spent in computing [20]. Therefore, we propose
a solution based on the principle of locality [21] that improves the
computational efficiency lowering the overall computational time. This
solution reduces the number of global memory accesses by keeping data
to be reused into the shared memory (global memory accesses have a
latency 100 times greater than the latency of the accesses to the shared
memory).

A thread can update the points shown in Fig. 4, preserving the
data dependency of the HPF, in two different ways: lexicographically
or along diagonals. The latter option is preferred because it does not
require ghost points, synchronization or extra computation when the
domain is long and further divided. These diagonals are considered
consecutively from left to right, while their points are updated from
the top to the bottom. In Fig. 4 is shown one of these diagonals,
highlighted with dark grey background, which starts in coordinate
l = L and t = 2. To update its points, the thread accesses 2d + 2
times the global memory to read the neighbour points required by
HPF. They belong to the diagonals with the checkerboard/vertically

l
t

L

d

Figure 4. Diagonal values involved in HPF updating of the dark gray
diagonal.

144 Tartarini and Massaro

Block Dim

B
lo

c
k
 T

im
e

s
te

p
s

B
lo
ck

 L
en

gt
h

l

jt

L

Figure 5. Diagonals stored in shared memory for a chunk of block
timesteps and a thread block of size Block Dim.

e,h(j, l +1, t -1)

e,h(j, l, t -1)

e,h(j, l -1, t -1)

e,h (j, l, t)

e,h(j, l, t -2)

l

ji

ψ

ψ

ψ

ψ

ψ

Figure 6. HPF stencil 3D representation.

striped patterns, and to the white cell black bordered. Moreover, we
observed that each diagonal’s update requires the points used by the
previous diagonal on its left. In fact the next diagonal in l = L + 1
uses the values of the diagonals with dark grey and striped patterns.
Therefore, keeping these two previous diagonals in shared memory,
thread can avoid 2d accesses to the global memory. This scheme is
repeated for all the next diagonals. In this way the only global memory
accesses are the ones needed to update the top point in each diagonal
to get the values ψe,h(j, l + 1, t − 1) and ψe,h(j, l, t − 2), beyond the
accesses to save the results.

The shared memory is a limited resource for each SM, which is
16KB for the Tesla architecture. Therefore the size of the diagonals
to be kept in shared memory (the one being updated and the previous
two) is chosen to allow the allocation of at least one block of threads
per SM: Diagonals size = Block Dim×Block T imesteps× 3.

The more blocks allocate on SM the better is the scheduling
performance as it will be shown in the numerical results. This new

Progress In Electromagnetics Research M, Vol. 17, 2011 145

approach allows saving global memory accesses but it requires each
thread block to update its domain in chunks of limited d time steps.
In Fig. 5 is shown the computational pattern for a generic diagonal
updating a chunk of thickness d = Block T imesteps. The computation
is thus organized in chunks of size Block Timesteps along the time
coordinate, for each thread block, and results are stored in GPU global
memory.

The last resource constraint regards the choice of GPU slice size to
allow computed data to be held in GPU global memory. Moreover, in
order to save space and bandwidth we encoded the permittivity mask
in a bitmask for each dielectric constant, requiring O(log2 nx) × ny

memory instead of O(nx)× ny.

4. NUMERICAL RESULTS AND DISCUSSIONS

The HPF tool is used to simulate the 2D behavior of a device
with nanostructures organized in different geometric configurations
(Fig. 7). We show the speedup using the GPUs and how the choice
of thread block dimension and the presence of permittivity variations

(b)

(c)

A

(a)

Figure 7. (a) Total electric field scattered by the nanodefects
A,B, C,D, R1, R2, and R3 at time step t = 150: Part of the electric
field is back scattered and part is propagated along the waveguide. The
source is sinusoidal with a wavelength of λ = 1.55 µm. The rods C are
1µm in length. (b) Zoomed image of the total electric field confined
in proximity of the dielectric corner of A: The nanoscale dimension
of the zoomed rectangular dielectric corner is 50 nm × 50 nm. (c) 3D
view of (a).

146 Tartarini and Massaro

(the background is air with refractive index nair = 1 and the dielectric
defect is a material with refractive index ndefect = 1.414) may bias the
performances.

In the simulations we considered below a computational space
of 1024 × 1024 points with a resolution of dx = dy = 1 nm is used.
The time step size of dt = dy × √

(εairµ0) is chosen to satisfy the
stability constraints CFL [22] and the source is sinusoidal working at
λ = 1.55 µm.

We compared the performance of the HPF tool for GPU with
the previous implementation for CPU (Fig. 8) through the Speedup
metric: Speedup=(Sequential execution time)/(Parallel execution
time). Where the Sequential execution time is the execution time of
the HPF version for CPU while parallel execution time is the execution
time of the GPU version.

S
p
e
e
d
u
p

N Time steps per thread block

HPF Speedup: GPU vs CPU

Speedup SP no defect

Speedup SP defects

Speedup DP no defect

Speedup DP defect

80

70

60

50

40

30

20

10

0
6 8 10 12 14 16 18 20

o

Figure 8. Speedup of the GPU (NVIDIA GeForce GTX295) vs
the CPU (Intel Core2 Quad CPU Q9550) is evaluated varying the
Time-step size in four different configuration: single(SP)/double(DP)
precision, presence (defect)/absence (no defect) of dielectric.

The GPU computing system we used is taken from the mainstream
computing market. It is a 64 bit Linux workstation equipped with an
Intel Core2 Quad Q9550 CPU running at 2.83GHz, 4 GB of DRAM
memory and a NVIDIA GeForce GTX295 graphics card.

We run the serial code on the CPU without exploiting
multithreading whilst the CUDA version has been run on only one
of the two GPUs of the GTX295 connected to its 896MB DRAM. The
version of the CUDA toolkit used to develop the application is the 3.10
while the driver installed in the operating system is that of NVIDIA
v.256.40.

In the speedup graph shown in Fig. 8 we compare the performances
of the same device simulation varying the size of block timesteps and

Progress In Electromagnetics Research M, Vol. 17, 2011 147

keeping fixed the Block dim size to 32 threads (see Fig. 5). We
adopted four different configurations using single/double precision
and presence/absence of permittivity discontinuities (i.e., defects).
Detailed simulation time and speedup are reported in Table 1.

Table 1. Time and Speedup for the simulation on GPU and CPU of
a discretized domain of 1024 × 1024 points for 192 timesteps. Data
are shown varying the block timesteps size, precision and presence of
defects. Underlined values are the best configurations.

Double precision Single precision

Without defect With defect Without defect With defect

 Block
timesteps

Time [ms] Time [ms] Time [ms] Time [ms]

CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

6 99543 2730 36.5 99553.5 2916 34.1 98210 1623 60.5 98932 1770 55.9

8 99543 2640 37.7 99553.5 2844 35.0 98210 1515 64.8 98932 1647 60.1

10 99543 3219 30.9 99553.5 3507 28.4 98210 1464 67.1 98932 1614 61.3

12 99543 3102 32.1 99553.5 3462 28.8 98210 1446 67.9 98932 1596 62.0

14 99543 3081 32.3 99553.5 3405 29.2 98210 1425 68.9 98932 1575 62.8

16 99543 3051 32.6 99553.5 3345 29.8 98210 1395 70.4 98932 1542 64.2

18 99543 2958 33.7 99553.5 3321 30.0 98210 1380 71.2 98932 1527 64.8

20 99543 2949 33.8 99553.5 3315 30.0 98210 1827 53.8 98932 2106 47.0

In the speedup graph (Fig. 8) we observe that using single
precision performs better than double precision. Generally this is due
to the greater number of clock cycles needed by the SMs to perform
operations on double precision floating-point numbers. In our test case,
as in other algorithms [21], the bandwidth is the bottleneck that does
not allow to harness all the available computational power. Therefore
the different performance depends on the fact that the smaller is the
data size the more elements are available for computation at a fixed
bandwidth (single precision floating point numbers are 4 Bytes in size
whilst the doubles are 8 Bytes).

In the case of a device embedding nanostructures, a lower
performance is observed in the speedup graph. In fact when a warp
of threads deals with a discontinuity, it must use different permittivity
constants through a branch. In CUDA different execution paths of a
branch are serialized on a SM (i.e., branch divergence) yielding a loss of
performance. We considered here the worst case with a configuration
with maximum number of divergent warps vs a device without defects
with no divergence.

The last consideration concerns the decrease of performance,
shown in Fig. 8, when changing the block timesteps size from 18 to

148 Tartarini and Massaro

20 timesteps in the single precision simulation and from 8 to 10 in the
double precision. The reason is associated with the number of blocks
and therefore the number of threads that can be allocated on the SMs.
In fact the memory required by the allocation of a block depends on
the block timesteps size, the bigger is the block timesteps the bigger is
the memory required. Therefore, when block timesteps exceeds 8, the
amount of blocks that can be allocated on a SM decreases from two to
one in the case of double precision. In the case of single precision, if the
size of time block exceeds 18, the blocks allocated on a SM decrease
from two blocks to one. The amount of blocks exceeds the available
SMs thus the scheduling is worse.

The results show that a good pattern of computing and the careful
choice of shared memory usage can provide a speedup of 70× in single
precision and almost 40× in double precision, Fig. 8.

5. CONCLUSIONS

The goal of this paper is, starting from a defined code, to find a GPU
matching approach. In particular the HPF code is performed in order
to understand the limits of the GPU for similar EM codes.

The CUDA platform and architecture has a low learning curve
that allows every scientist to benefit of the extreme performance of the
GPU computing. Nevertheless, smart tailoring of the code/algorithm
to the resources available is required.

In this work we demonstrate that with a few code modifications it
is possible to perform simulations that otherwise require an expensive
HPC cluster.

ACKNOWLEDGMENT

D. T. would like to thank Dr. F. Calabi of the Istituto Nanoscienze-
CNR, and Prof. G. Aloisio of the University of Salento in Lecce, for
their support.

REFERENCES

1. Massaro, A., M. Grande, R. Cingolani, A. Passaseo, and
M. De Vittorio, “Design and modelling of tapered waveguide for
photonic crystal slab coupling by using time-domain Hertzian
potential formulation,” Opt. Express, Vol. 15, No. 25, 16484–
16499, 2007.

Progress In Electromagnetics Research M, Vol. 17, 2011 149

2. VanRoey, J., J. van Derdonk, and P. Lagasse, “Beam-propagation
method: Analysis and assessment,” J. Opt. Soc. Am., Vol. 71,
803–810, 1981.

3. Yee, K. S., “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Trans.
Antennas Propagation, Vol. 14, No. 8, 302–307, 1966.

4. Massaro, A. and T. Rozzi, “Rigorous time-domain analysis
of dielectric optical waveguides using Hertzian potentials
formulation,” Opt. Express, Vol. 14, No. 5, 2027–2036, 2006.

5. Massaro, A., V. Tasco, M. T. Todaro, R. Cingolani, M. De Vitto-
rio, and A. Passaseo, “Scalar time domain modeling and coupling
of second harmonic generation process in gaas discontinuous op-
tical waveguides,” Opt. Express, Vol. 16, No. 19, 14496–14510,
2008.

6. Owens, J. D., M. Houston, et al., “GPU computing,” Proceedings
of the IEEE, Vol. 96, No. 5, 879–899, May 2008.

7. Nickolls, J. and W. J. Dally, “The GPU computing era,” IEEE
Micro., Vol. 30, 56–69, 2010.

8. Huang, S., S. Xiao, and W. Feng, “On the energy efficiency
of graphics processing units for scientific computing,”IEEE
International Symposium on Parallel & Distributed Processing, 1–
8, 2009.

9. Krakiwsky, S. E., L. E. Turner, and M. M. Okoniewski,
“Acceleration of finite-difference time-domain (FDTD) using
graphics processor units (GPU),” IEEE MTT-S Int. Microwave
Symp. Digest, 1033–1036, 2004.

10. Peng, S. X. and Z. P. Nie, “Acceleration of the method of moments
calculations by using graphics processing units,” IEEE Trans.
Antennas and Propagation, Vol. 56, No. 7, 2130–2133, Jul. 2008.

11. Zainud-Deen, S. H., E. El-Deen, M. S. Ibrahim, K. H. Awadalla,
and A. Z. Botros, “Electromagnetic scattering using gpu-
based finite difference frequency domain method,” Progress In
Electromagnetics Research B, Vol. 16, 351–369, 2009.

12. Jiang, W. Q., M. Zhang, and Y. Wang, “CUDA-based radiative
transfer method with application to the EM scattering from a
twolayer canopy model,” Journal of Electromagnetic Waves and
Applications, Vol. 24, No. 17–18, 2509–2521, 2010.

13. Xu, K., Z. H. Fan, D. Z. Ding, and R. S. Chen, “GPU accelerated
unconditionally stable Crank-Nicolson FDTD method for the
analysis of three-dimensional microwave circuits,” Progress In
Electromagnetics Research, Vol. 102, 381–395, 2010.

150 Tartarini and Massaro

14. Mur, G., “Absorbing boundary conditions for the finite-
difference approximation of the time-domain electromagnetic field
equations,” IEEE Trans. Electromagn. Compat., Vol. 23, 377–382,
1981.

15. Taflove, A. and S. C. Hagness, Computational Electrody-
namic: The Finite-difference Time-domain Method, 2nd edition,
Chaps. 2, 4, and 7, Arthec House Publishers, London, 2000.

16. Lindholm, E, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A unified graphics and computing architecture,” IEEE
Micro., Vol. 28, 39–55, 2008.

17. NVIDIA CUDA C Programming guide v.3.2. Nvidia Corp., 2010.
18. NVIDIA CUDA C Best Practices guide v.3.2. Nvidia Corp., 2010.
19. Patterson, D. A. and J. L. Hennessy, Computer Organization and

Design: The Hardware/Software Interface, 4th edition, Morgan
Kaufmann, 2008.

20. Kirk, D. B. and W.-M. W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Morgan Kaufmann, 2010.

21. Ryoo, S., C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W.-M. W. Hwu, “Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA,”
Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ACM, 73–82, New York,
USA, 2008.

22. Courant, R., K. Friedrichs, and H. Lewy, “On the partial
difference equations of mathematical physics,” IBM Journal of
Research and Development, Vol. 11, No. 2, 215–234, 1967.

