Vol. 22
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-21
Pulse Signals in Open Circular Dielectric Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 22, 9-17, 2011
Abstract
Excitation and propagation of a pulse electromagnetic wave in an open circular dielectric waveguide is considered. Partition of the pulse field into radiated wave, surface wave, and guided wave has been revealed and the corresponding physical effects are interpreted directly in the time domain. Namely it was shown that there is a precursor at the rod axis that propagates with speed of light in free space, it originates from the pulse surface wave that propagates along the rod surface and radiates into the rod in a Cherenkov like manner.
Citation
Maxim N. Legenkiy, and Alexander Butrym, "Pulse Signals in Open Circular Dielectric Waveguide," Progress In Electromagnetics Research Letters, Vol. 22, 9-17, 2011.
doi:10.2528/PIERL11020202
References

1. Chang, W. S. C., Fundamentals of Guided-wave Optoelectronic Devices, 199, Cambridge University Press, 2010.

2. Tamir, T., "Leaky waves in planar optical waveguides," Nuov. Rev. Optique, Vol. 6, No. 5, 273-284, 1975.
doi:10.1088/0335-7368/6/5/304

3. Jablonski, T. F., "Complex modes in open lossless dielectric waveguides," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1272-1282, April 1994.
doi:10.1364/JOSAA.11.001272

4. Arcone, S. A., "Field observations of electromagnetic pulse propagation in dielectric slabs," Geophysics, Vol. 49, No. 10, 1763-1773, October 1984.
doi:10.1190/1.1441584

5. Inada, H., "Backscattered short pulse response of surface waves from dielectric spheres," Appl. Opt., Vol. 13, 1928-1933, 1974.
doi:10.1364/AO.13.001928

6. Baumgartner, F., J. Munk, and J. Deniels, "A geometric optics model for high-frequency electromagnetic scattering from dielectric cylinders," Geophysics, Vol. 66, No. 4, 1130-1140, July-August 2001.
doi:10.1190/1.1487061

7. Liu, L. and S. A. Arcone, "Propagation of radar pulses from a horizontal dipole in variable dielectric ground: A numerical approach," Subsurface Sensing Technologies and Applications, Vol. 6, No. 1, 5-24, January 2005.
doi:10.1007/s11220-005-4223-2

8. McGowan, R. W., R. A. Cheville, and D. R. Grischkowsky, "Experimental study of the surface waves on a dielectric cylinder via terahertz impulse radar ranging," IEEE Trans. Microwave Theory and Techn., Vol. 48, No. 3, 417-422, 2000.
doi:10.1109/22.826841

9. Legenkiy, M. and A. Butrym, "Impulse signal propagation in open dielectric circular waveguide," Conf. Proc. 2010 Ultrawideband and Ultrashort Signals UWBUSIS, 119-121, Sebastopol, Ukraine, September 6-10, 2010.

10. Hanham, S. and T. Bird, "High efficiency excitation of dielectric rods using a magnetic ring current," IEEE Trans. on Ant. and Prop., Vol. 56, No. 6, 1805-1808, June 2008.
doi:10.1109/TAP.2008.923335

11. Schantz, H., The Art and Science of Ultrawideband Antennas, 301, Artech House, 2004.

12. Landau, L. D., et al. Electrodynamics of Continuous Media, 468, Pergamon Press, 1984.

13. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, Vol. 408, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001

14. Annan, A. P., "Radio interferometry depth sounding: Part I --- Theoretical discussion," Geophysics, Vol. 38, 557-580, 1973.
doi:10.1190/1.1440360