Vol. 116
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-09
An Artificial Nerve Network Realization in the Measurement of Material Permittivity
By
Progress In Electromagnetics Research, Vol. 116, 347-361, 2011
Abstract
E®ective complex permittivity measurements of materials are important in microwave engineering and microwave chemistry. Artificial neural network (ANN) computational module has been used in microwave technology and becomes a useful tool recently. A neural network can be trained to learn the behavior of an effective permittivity of material under microwave irradiation in a test system, and it can provide a fast and accurate result for the permittivity measurement of material. Thus, an on-line measurement has been realized. This paper presents a simple and convenient reconstruction algorithm for determining the dielectric properties of materials. First, a measurement system is designed, and the reflection coefficient is calculated by employing full-wave simulations. Second, an artificial nerve network has been applied, and adequate simulated materials are utilized to train the networks. Last, the trained network is employed to reconstruct the effective permittivity of several organic solvents using the measured scattering parameters, and the reconstructed results for several organic solvents agree well with reference data and the relative errors between them are less than 5%.
Citation
Qian Chen, Ka-Ma Huang, Xiaoqing Yang, Ming Luo, and Huacheng Zhu, "An Artificial Nerve Network Realization in the Measurement of Material Permittivity," Progress In Electromagnetics Research, Vol. 116, 347-361, 2011.
doi:10.2528/PIER11012902
References

1. Addamo, G., G. Virone, D. Vaccaneo, R. Tascone, O. A. Peverini, and R. Orta, "An adaptive cavity setup for accurate measurements of complex dielectric permittivity ," Progress In Electromagnetics Research, Vol. 105, 141-155, 2010.
doi:10.2528/PIER10042606

2. Huang, K. and X. Yang, "A method for calculating the effective permittivity of a mixture solution during a chemical reaction by experimental results," Progress In Electromagnetics Research Letters, Vol. 5, 99-107, 2008.
doi:10.2528/PIERL08110403

3. Yan, L., K. Huang, and C. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, Oct. 2007.

4. Chen, L. F., C. K. Ong, C. P. Neo, et al. "Microwave Electronics: Measurement and Materials Characterization," John Wiley & Sons, West Sussex, England, 2004.

5. Hasar, U. C. and E. A. Oral, "A metric function for fast and accurate permittivity determination of low-to-high-loss materials from reflection measurements ," Progress In Electromagnetics Research, Vol. 107, 397-412, 2010.
doi:10.2528/PIER10071308

6. Meng, B., J. Booske, and R. Cooper, "Extended cavity perturbation technique to determine the complex permittivity of dielectric materials," IEEE Trans. Microw. Theory Tech., Vol. 43, 2633-2636, 1995.
doi:10.1109/22.473190

7. Kaatze, U., "Techniques for measuring the microwave dielectric properites of materials," Metrologia, Vol. 47, No. 2, S91-S113, 2010.
doi:10.1088/0026-1394/47/2/S10

8. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336

9. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09071409

10. Wang, Z., W. Che, and L. Zhou, "Uncertainty analysis of the rational function model used in the complex permittivity measurement of biological tissues using PMCT probes within a wide microwave frequency band," Progress In Electromagnetics Research, Vol. 90, 137-150, 2009.
doi:10.2528/PIER09010403

11. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements ," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606

12. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nonduetructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

13. Le Floch, J. M., F. Houndonougbo, V. Madrangeas, D. Cros, M. Guilloux-Viry, and W. Peng, "Thin film materials characterization using TE modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 549-559, 2009.
doi:10.1163/156939309787612293

14. Jin, H., S. R, Dong, and D. M. Wang, "Measurement of dielectric constant of thin film materials at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 809-817, 2009.
doi:10.1163/156939309788019831

15. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
doi:10.2528/PIERB08072005

16. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09011702

17. Hasar, U. C., "Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.
doi:10.2528/PIER10101208

18. Kilic, E., F. Akleman, B. Esen, D. M. Ozaltin, O. Ozdemir, and A. Yapar, "3-D imaging of inhomogeneous materials loaded in a rectangular waveguide," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1290-1296, 2010.
doi:10.1109/TMTT.2010.2045528

19. Huang, K., X. Cao, C. Liu, and X.-B. Xu, "Measurement/computation of effective permittivity of dilute solution in saponification reaction," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 10, 2106-2111, 2003.
doi:10.1109/TMTT.2003.817454

20. Luo, M., K. Huang, and T. Pu, "Measurement and prediction of dielectric for liquids based artificial nerve network," ICMMT 2010 Proceedings, 1083-1085, 2010.

21. Bartley, Jr., P. G., R. W. McClendon, and S. O. Nelson, "Permittivity determination by using an artificial neural network," ICMMT 2010 Proceedings, 1083-1085, 2010.

22. Eves, E. E., P. Kopyt, and V. V. Yakovlev, "Determination of complex permittivity with neural networks and FDTD modeling," Microwave and Optical Technology Letters, Vol. 40, No. 3, 183-188, 2004.
doi:10.1002/mop.11323

23. Xu, Z.-B., R. Zhang, and W.-F. Jing, "When does online BP training converge?," IEEE Transactions on Neural Network, Vol. 20, No. 10, 1529-1539, 2009.
doi:10.1109/TNN.2009.2025946

24. Liu, L., J. Chen, and L. Xu, "Realization and application research of BP neural network based on MATLAB," 2008 International Seminar on Future Biomedical Information Engineering, 130-133, 2008.
doi:10.1109/FBIE.2008.92

25. Wang, S. and Y. Wang, "The demarcating method of infrared image measuring temperature based on GA-BP network," 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering, 2010.

26. Xuan, H. and M. He, "Study of detection technique simulation of high resolution radar based BP neural network," Third International Conference on Natural Computation (ICNC2007), 2007.

27. Weckman, G. R., H. W. Paschold, et al. "Using neural networks with limited data to estimate manufacturing cost," Journal of Industrial and Systems Engineering, Vol. 3, No. 4, 257-274, 2010.

28. Gorriti, A. G. and E. C. Slob, "A new tool for accurate s-parameters measurements and permittivity reconstruction," IEEE Transactions on Geosciences and Remote Sensing, Vol. 43, No. 8, 1727-1735, 2005.
doi:10.1109/TGRS.2005.851163

29. Ogasawara, E., L. C. Martinez, D. de Oliveira, et al. "Adaptive normalization: A novel data normalization approach for non-stationary time series," Neural Networks (IJCNN), The 2010 International Joint Conference on Digital Object Identifier, 1-8, 2010.
doi:10.1109/IJCNN.2010.5596746

30. Akdemir, B., B. Oran, S. Gunes, et al. "Prediction of aortic diameter values in healthy turkish infants, children, and adolescents by using artificial neural network," Journal of Medical Systems, Vol. 33, No. 5, 379-388, 2009.
doi:10.1007/s10916-008-9200-6

31. Sola, J. and J. Sevilla, "Importance of input data normalization for the application of neural networks to complex industrial problems ," IEEE Trans. Nuclear Science, Vol. 44, No. 3, 1464-1468, 1997.
doi:10.1109/23.589532

32. Holloway, A. and T. Chen, "Neural networks for predicting the behavior of preconditioned iterative solvers," Proceedings of the 2007 International Conference on Computational Science, Beijing, China, May 2007.

33. EI-Bakry, H. M. and Q. Zhao, "Fast pattern detection using normalized neural networks and cross-correlation in the frequency domain," EURASIP Journal on Applied Signal Processing, Vol. 13, 2054-2060, 2005.

34. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, Norwood, MA, 2000.

35. Wan, S. and L. E. Banta, "Parameter incremental learning algorithm for neural networks," IEEE Transactions on Neural Network, Vol. 17, No. 6, 1424-1438, 2006.
doi:10.1109/TNN.2006.880581

36. Engelbrecht, A. P. and R. Brits, "A clustering approach to incremental learning for feedforward neural networks," Proc. Int. Joint Conf. Neural Netw., Vol. 3, 2019-2014, 2001.

37. Engekbrecht, A. P. and I. Cloete, "Incremental learing using sensitivity analysis," Proc. Int. Joint Conf. Neural Netw., 380, USA, 1999.

38. Wei, H., X.-Q. Yang, K.-M. Huang, et al. "Study on the complex permittivity of common organic reagent at 2.45 GHz," Chemical Research and Application, Vol. 18, No. 10, 1232-1234, 2006.

39. Stogryn, A., "Equations for calculating the dielectric constant of saline water," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 8, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617