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Abstract—Effective complex permittivity measurements of materials
are important in microwave engineering and microwave chemistry.
Artificial neural network (ANN) computational module has been used
in microwave technology and becomes a useful tool recently. A
neural network can be trained to learn the behavior of an effective
permittivity of material under microwave irradiation in a test system,
and it can provide a fast and accurate result for the permittivity
measurement of material. Thus, an on-line measurement has been
realized. This paper presents a simple and convenient reconstruction
algorithm for determining the dielectric properties of materials. First,
a measurement system is designed, and the reflection coefficient is
calculated by employing full-wave simulations. Second, an artificial
nerve network has been applied, and adequate simulated materials are
utilized to train the networks. Last, the trained network is employed to
reconstruct the effective permittivity of several organic solvents using
the measured scattering parameters, and the reconstructed results for
several organic solvents agree well with reference data and the relative
errors between them are less than 5%.

1. INTRODUCTION

Effective permittivity measurements of materials are important in
microwave engineering, microwave material processing, microwave
chemistry, and electrobiology [1–3]. For this reason, various
microwave techniques have been introduced to characterize the
electrical properties of materials. These methods can roughly be
divided into resonant and non-resonant methods [4]. Resonant
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methods have much better accuracy and sensitivity than non-resonant
methods [5]. Moreover, the perturbation method associated with the
measurement of resonant frequencies and the Q-factor of a cavity
can give satisfactory results, but even the advanced variants of this
method (for example, [6]) have a principal limitation: The sample
size should be very small compared to the dimension of the cavity
so that the electric field inside the cavity does not change much
due to the presence of the sample. Also, the sample must be
of a specified shape for which corresponding formulas computing
permittivity are eligible. In many applications, these requirements
are difficult to follow or simply not acceptable. On the other
hand, non-resonant methods have relatively higher accuracy over a
broad frequency band and necessitate less sample preparation than
resonant methods [7]. Due to their relative simplicity, non-resonant
waveguide coaxial transmission/reflection methods are presently the
most widely used broadband measurement techniques [8]. Various
non-resonant transmission-reflection methods have been proposed for
electrical characterization of low-, medium-, and high-loss materials [9–
18].

Especially, in some chemistry reaction, since the reactants form a
complicated mixture, which varies with time, an effective permittivity
can be used to describe the molecular polarization of the mixture in
the reaction [19]. The effective permittivity is expected to vary with
respect to microwave frequency, temperature, and reaction time. An
on-line measurement is needed to reconstruct the effective permittivity.
However, in many cases, the effective permittivity of chemistry reaction
is difficult to be measured on-line with traditional reconstruction
algorithms. Artificial neural network computational modules have
gained recognition as an unconventional and useful tool for microwave
technology recently [20–22].

Neural networks can be trained to learn the behavior of the
effective permittivity of the material under microwave irradiation.
When the network is sufficiently trained, it is supplied with the values
of measured complex S-parameters and determines ε′r and ε′′r of the
sample. The measurement apparatus in [20] is adapted to measure the
liquid materials with high loss factor. The ANN with samples using
uniform grid distribution is used to reconstruct the permittivity. Fast,
accurate, and reliable neural network models can be developed from
measured/simulated microwave data. In [21], an open-ended coaxial
probe is used to determine the dielectric properties of materials from
uncorrected reflection coefficient measurements by using an artificial
neural network. The ANN was trained by using measurements made on
several isopropyl alcohol solutions. In [22], a method employing neural
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network control over FDTD modeling is proposed for the determination
of the permittivity of dielectric materials. The dielectric properties of
fresh and saline water at 915 MHz have been obtained.

This paper is concerned with application of an advanced BP
neural network optimization technique to measure the permittivity
of materials. We present a simple and convenient reconstruction
algorithm for determining the effective permittivity. A measurement
system has been designed, and the S-parameters are obtained by
the frequency dependent finite difference time domain (FDTD) to
reconstruct the permittivity of material. Moreover, the normalization
has been used to improve the convergence speed in neural networks,
and to improve accuracy of the reconstruction result, more training
samples have been selected from materials of low permittivity. At last,
several organic solvents have been measured. The reconstructed results
of the effective permittivities of solvents by means of the ANN agree
well with previous published data.

Compared with the measurement methods mentioned above, the
measurement technique in this paper has some advantages. The
measurement system can operate in a broad frequency band and deal
with a temperature rising process; the sample may be liquids, powders
or gases. Moreover, the neural model development using simulation
data is very convenient.

2. BP ALGORITHM

The back propagation (BP) neural networks have been widely
applied in various areas of scientific research and engineering [23].
Among all kinds of artificial neural network studied today, the BP
network, which depends on simple structure, strong operation-ability,
imitation of every nonlinear relation between input and output, is
widely applied in the fields such as function approximation, pattern
identification, classification, data compress, image process, system
control, etc. [24, 25]. In fact, it is to modify weight coefficient,
according to negative grads direction of error function, to make error
decrease.

2.1. Diagram of BP Algorithm

The BP network used in this technique is shown in Fig. 1. A BP neural
network is a kind of typical forward network, composed of input layer,
hidden layer and output layer. Full interconnect form is among the
layers. Multilayer perceptions (MLP) are one of the commonly used
neural network structure. In a typical (MLP) neural network, each
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Figure 1. The structure of the BP.

node is connected to all the nodes in the previous layer as well as all
the nodes in the next layer. And disconnects form between two neural
units of the same layer. BP network transmits directly, and information
transmission is bidirectional. In this paper, BP neural network has
been used to reconstruct the effective permittivity of material measured
by scattering parameter (|S11|, ϕS11).

2.2. Fundamental Principle of BP Algorithm [26]

A neural network is created with one or more levels of hidden nodes
to model a system. There are multiple connections, which all have
the weight and error term adjusted through the training process, from
the inputs to the nodes of the hidden layer and, then, to the output.
Weights are assigned during training to each arc between the nodes.
The node then uses a transfer function to produce a weight-associated
output. During the training process, the network assigns weights to the
nodes to achieve the best relationship between the training input and
output values. The neural network runs through the process many
times adjusting weights to minimize the error. Once trained, the
network has a model with the weights that provide the best results
to calculate the estimate for a part that is not in the training data
set [27].

2.3. Reconstruction of Permittivity for Material by BP
Network

Figure 2 shows the process to reconstruct the permittivity for material
by BP network. The result can be gained very quickly once the network
has been trained, because the samples have been produced by FDTD
method before trained. Neural model development using simulation
data has some advantages: firstly, to sweep any parameter in the
simulator is relatively easier; secondly, any response can be modeled
as long as it can be computed in the simulator. In this paper, training
data is generated with the help of a special procedure which repeatedly
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Figure 2. The flow chart of reconstruction permittivity by BP.

operates the (CST) simulation computing the reflection coefficient for
different values of permittivity of the sample.

The reconstruction for the permittivity of material with the ANN
and FDTD in a broadband measurement is proposed in this paper. The
dielectric properties of materials in a broad band are very convenient
to obtain, when the permittivity of materials as variables has been
simulated in FDTD within the frequency band.

The network has been trained by samples before measurement
and saved, then the test data are gotten from measurement. Training
technique, namely back propagation is implemented with the use of
the gradient method. When the network is sufficiently trained, it is
supplied with the values of measured S-parameters and determines ε′r
and ε′′r of the sample in several seconds. The test data can be processed
in parallel. Many reconstruct results can be gained at one time. So
the on-line measurement has been realized by using BP neural network.
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The computational component of our technique is implemented as a
MATLAB code; the N (data of neural) is selected by the existing
empirical formulas based on the data of samples. We train 5 times
with one structure and save the net structure with the smallest mean
square error.

3. MEASUREMENT APPARATUS

In this section, the functionality of the BP algorithm is illustrated
by examples. The experimental component of the present method
is realized with a transmission-line method. We use a new open
ended coaxial probe to measure the magnitude and phase of reflection
coefficients (|S11|, ϕS11) at the frequency of interest f0 contained in
an iron can structure in this work. The measurement apparatus can
be used over a broad frequency band. The measurement installation
is shown in Fig. 4. For measuring the permittivity of materials,
many structures using coaxial lines have been reported [20, 21, 28].
In [20, 21], the apparatus was used to measure the permittivities of
liquid materials. The line was designed for measurements of soil
samples in [28]. However, in many cases, the change of the effective
permittivity is too small to be observed by traditional methods. We
propose an iron can to contain the material measured as in Fig. 7. The
sample may be liquids, powders or gases. The inner and outer radii
of the iron can are 50 mm and 53 mm, respectively. The height of the
iron can is 100 mm. The iron can structure is large enough, so that the
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Figure 5. Structure of the open
ended coaxial probe.

Figure 6. Simulation model.

scattering parameters which are used to reconstruct the permittivity
can reflect the dielectric properties of materials measured. The on-
line measurement apparatus can be applied to measure the material
permittivities in a temperature rising process, because the iron counter
could be heated directly and has a better thermal conductive property
when the material permittivity in high temperature is measured.
Moreover, the coaxial probe has been designed in the pointed-end
structure for plugging in powders easily as in Fig. 5. The joint of
the probe is designed as type N , the connector commonly used in
microwave measurements, to connect with the analyzer easily. To
validate the performance of the coaxial structure, the experimental
and computational results show that the coaxial probe is very sensitive
to the change of the effective permittivity, and the results agree with
each other well. The simulation and measurement results for air from
2GHz to 3GHz have been obtained. The comparison between the
calculated and measured magnitudes of the reflection coefficient are
shown in Fig. 3.

In the process, data, which are needed to be trained in networks,
and their performance is evaluated, were obtained from simulations
accomplished with the FDTD. The simulation model is shown in Fig. 6.
Because these materials to be studied are dispersive materials, we
develop a MLP neural network based BP arithmetic and use enough
simulated materials as samples to train the networks.

4. NORMALIZATION OF THE TRAINING SAMPLES

BP neural network with normalization is measurably superior to the
standard online BP algorithm in terms of the convergence speed and
accuracy. When facing the original data from simulation, one realizes
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that they are expressed in very different units, not even belonging
to the same units system. Not only are the units different, but also
the order of magnitude of their absolute values are very different.
The phase of S11, one of the input data, ranges from −180◦ to
180◦. However, the other input data |S11| range from 0 to 1. The
normalization of data balances the ranges of different inputs.

The most common normalization methods used during data
transformation include the min-max, z-score, and decimal scaling [29].
For the min-max and decimal scaling methods, their applicability
depends on knowing the minimum and/or maximum values. For the z-
score method, in contrast, it is useful when the minimum and maximum
values of an attribute are unknown. After the min-max normalization,
data values are set between zero and one. However, the z-score and
decimal scaling set the data values from −1 to 1 [30]. The min-max
scaling method has been used to normalize the training samples.

In this paper, the error precision is 10−3, and the maximal cycle
number is 6000. The training process is stopped when either condition
is reached. The training of the neural network without normalization
of input data is not convergent after 6000 epochs. The number of
epochs reaches the value preset, and the training process is stopped.
So the neural network maybe use more time to train the network to
reach the accuracy predetermined.

We have found that input data normalization with certain criteria
prior to a training process is crucial to obtaining good results as well
as to significantly accelerate the calculations [31–33].

The neural network has been convergent using the normalization
of input data when the number of epochs attains 6000. So the
normalization affects the convergence properties of neural network and
exhibits a superior performance to the traditional method in terms of
convergence speed. Then the anti-normalization must be used when
the output data has been obtained form the trained neural network.

5. CONSTRUCTION OF THE SAMPLE SPACE [32]

Data generation is a crucial step toward developing accurate and
reliable neural models. Suggested sample distributions are uniform grid
distribution, nonuniform grid distribution, star distribution, central-
composite distribution, and random distribution [34]. In uniform
grid distribution, each input parameter is sampled at equal intervals,
while in nonuniform grid distribution, each input parameter is sampled
at unequal intervals. Uniform grid distribution could be a default
strategy. Nonuniform grid distribution is used when we have a certain
understanding of the problem and deliberately choose dense samples
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in subregions of the input space where problem behavior is highly
nonlinear.

In this section, we describe the creation of the sample space
and the training of the network, especially, how information from the
preconditioned system can be used to increase reconstruction accuracy.

The sample space made has referred to the incremental learning
method. The incremental learning may also be addressed in context of
training data manipulation [35]. For example, in [36], an incremental
learning strategy is implemented through the selection of the most
informative training samples. Given enough data, an ANN will
reconstruct the permittivities of materials and produce a more accurate
result. The accuracy for reconstruction of permittivity depends on the
amount of data available in these loss dielectric materials.

Before constituting the model the primary question is the
production of samples. On the one hand, the characteristic of network
should be considered; on the other hand, the sample data must
do their best to reflect the intrinsic rule of materials permittivities.
The learning strategy is implemented through the selection of most
informative training samples [36]. The informativeness is defined as
the sensitivity of the neural network output to perturbations in the
input value of that pattern [37]. In [36], the output sensitivity vector
is defined as (1),

~S(p)
o =

∥∥∥S(p)
oz

∥∥∥
2

(1)

~S
(p)
o is the output sensitivity vector, and S

(p)
oz is the output-input layer

sensitivity matrix. Each element S
(p)
oz,ki of the sensitivity matrix is

defined as a single output unit ok to changes in the input vector ~z; k

Figure 7. Structure of iron can.
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is the total number of output units.

S
(p)
oz,ki =

∂ok

∂z
(p)
i

(2)

In this paper, the FDTD is applied to simulate the |S11| and ϕS11 ,
using the real part and imagery part of different materials as input
parameters. For example, Fig. 8 shows the phase variation of S-
parameters due to the change in real part of permittivities. The slope
of the curve which expresses the sensitivity of the output changes from
small to large with the input data increasing. The slope is larger at
the low permittivity material areas than the high permittivity material
areas, and the samples in low permittivity material areas are more
informative, so more samples have been selected in training neural
networks. In addition, the low permittivity materials have larger
relative errors with the same absolute reconstruction errors. The more
samples have been selected, the better accuracy of reconstruction by
BP neural network is. For example, when the real part of permittivity
varies from 3 to 5, the sample intervals are 0.1. When the real part of
permittivity varies from 5 to 10, the sample intervals are 0.2.

Thus, the relative errors of measurement for the materials
permittivities are less than 5%.

6. THE RECONSTRUCTION RESULTS

The permittivity of material can be gained when the scattering
parameters measured have been put in the trained BP network. So

Table 1. Effective permittivities of material at 2.45GHz.

Material

name

real part of permittivity Imaginary part of permittivity

Measurement
Reference

[38]

relative

errors

(%)

Measurement
Reference

[38]

relative

errors

%

DMSO 46.890 48.900 −4.1 19.223 20.002 −3.9

Methanol 25.910 24.970 3.8 14.010 14.523 −3.5

Formic

acid
6.839 7.135 −4.1 1.325 1.359 −2.5

Ethanol 8.680 8.939 −2.9 7.305 7.585 −3.7

Acetone 20.021 19.325 3.6 1.132 1.099 3.0

Glycol 19.576 18.969 3.2 17.489 16.898 3.5

Glycerin 6.909 7.123 −3.0 3.685 3.838 −4.0
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Table 2. Effective permittivities of NaCl solutions with different
fraction at 1GHz.

ω

(NaCl)

(‰)

real part of permittivity imaginary part of permittivity

measurement
reference

[39]

relative

error

(%)

measurement
reference

[39]

relative

error

(%)

5 82.72 79.85 3.5 16.87 17.57 −4.0

10 80.49 78.15 2.9 28.53 29.70 −3.9

20 77.75 74.89 3.7 54.70 53.17 2.9

the trained network can use the scattering parameter to measure
the effective permittivity of materials quickly. Table 1 shows the
reconstructed results of several organic solvents at 2.45 GHz. The
accurate reconstructed results have been gained by BP network.
Table 2 shows the reconstructed results of saline solution at 1 GHz,
15◦C. The results show that the measurement apparatus can be used
in a broadband measurement.

7. CONCLUSION

In this paper, we design an on-line measurement apparatus for
materials permittivities. The new open-ended coaxial probe has been
designed to measure the scattering parameters, and the techniques of
BP neural network have been applied to reconstruct the permittivity.
BP network is a simple, fast and convenient method to measure the
permittivity of materials. The measured results show BP neural
network can be applied to measurements of materials permittivities
and work well. Moreover, the on-line measurement apparatus can
be applied to measuring the material permittivities in a temperature
rising process, because the iron can has a better thermal conductive
property. The test probe is based on the open-ended coaxial line, which
makes the measurement apparatus possible for broadband applications.
Meanwhile, the measurement apparatus can be applied to measuring
liquids, gases or powders. It can even perform measurements on
the permittivity of chemistry reaction with time and temperature
variation.
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