Vol. 17
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-03-30
A Fundamental Limit on Subwavelength Guided Waves
By
Progress In Electromagnetics Research M, Vol. 17, 253-265, 2011
Abstract
A fundamental relation between the cross sectional confinement of an arbitrary mode of a general waveguide and its propagation length is found. It is shown that due to material loss of the waveguide, the propagation length shrinks as the confinement of the mode increases. Normalized second central moment of magnetic energy density in the cross section plane of the waveguide is used as a measure of mode size and it is found that for a given mode size, there is a limit for the waveguide propagation length. This limit depends solely on permittivity of the waveguide material and its surrounding medium. As an application, this result provides a lower bound for propagation loss in subwavelength optical confinement in plasmonic waveguides which are of special interest for their nano-meter mode dimensions.
Citation
Amir Arbabi, E. Arbabi, and Safieddin Safavi-Naeini, "A Fundamental Limit on Subwavelength Guided Waves," Progress In Electromagnetics Research M, Vol. 17, 253-265, 2011.
doi:10.2528/PIERM11012901
References

1. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849

2. Barnes , W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, London, 2003.
doi:10.1038/nature01937

3. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, No. 7083, 508-511, London, 2006.
doi:10.1038/nature04594

4. Zia, R., M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A, Vol. 21, No. 12, 2442-2446, 2004.
doi:10.1364/JOSAA.21.002442

5. Dionne, J. A., L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B, Vol. 73, No. 3, 035407, 2006.
doi:10.1103/PhysRevB.73.035407

6. Baida , F. I., A. Belkhir, D. V. Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B, Vol. 74, No. 20, 205419, 2006.
doi:10.1103/PhysRevB.74.205419

7. Gramotnev, D. K. and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," App. Phys. Lett., Vol. 85, No. 26, 6323-6325, 2004.
doi:10.1063/1.1839283

8. Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photon., Vol. 2, No. 8, 496-500, 2008.
doi:10.1038/nphoton.2008.131

9. Rybczynski, J., K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, and Z. F. Ren, "Subwavelength waveguide for visible light," App. Phys. Lett., Vol. 90, No. 2, 21104, 2007.
doi:10.1063/1.2430400

10. Pile, D. F. P. and D. K. Gramotnev, "Plasmonic subwavelength waveguides: Next to zero losses at sharp bends," Optics Lett., Vol. 30, No. 10, 1186-1188, 2005.
doi:10.1364/OL.30.001186

11. Oulton, R. F., V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature, Vol. 461, No. 8364, 629-632, London, 2009.

12. Veronis, G. and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett., Vol. 85, No. 13, 131102, 2005.
doi:10.1063/1.2056594

13. Hosseini, A. and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett., Vol. 90, No. 18, 181102, 2007.
doi:10.1063/1.2734380

14. Boltasseva, A., T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightw. Technol. , Vol. 1, No. 1, 413-422, 2005.
doi:10.1109/JLT.2004.835749

15. Pile, D. F. P., T. Ogawa, D. K. Gramotnev, and Y. Matsuzaki, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," App. Phys. Lett., Vol. 87, No. 26, 2005.
doi:10.1063/1.2149971

16. Chen, L., J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Optics Lett., Vol. 31, No. 14, 2133-2135, 2006.
doi:10.1364/OL.31.002133

17. Palik, E. D., Handbook of Optical Constants of Solids, Vol. I, Academic Press, 1998.