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A FUNDAMENTAL LIMIT ON SUBWAVELENGTH
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Abstract—A fundamental relation between the cross sectional
confinement of an arbitrary mode of a general waveguide and its
propagation length is found. It is shown that due to material loss
of the waveguide, the propagation length shrinks as the confinement
of the mode increases. Normalized second central moment of magnetic
energy density in the cross section plane of the waveguide is used as a
measure of mode size and it is found that for a given mode size, there
is a limit for the waveguide propagation length. This limit depends
solely on permittivity of the waveguide material and its surrounding
medium. As an application, this result provides a lower bound for
propagation loss in subwavelength optical confinement in plasmonic
waveguides which are of special interest for their nano-meter mode
dimensions.
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1. INTRODUCTION

In recent years, with the advent of the emerging field of surface
plasmon photonics or so called “Plasmonics” [1, 2], subwavelength
waveguides at optical frequencies have attracted much attention.
Different types of waveguides have been proposed and investigated
for their ability to guide optical waves with subwavelength cross
sectional mode dimensions [3–11]. Based on these waveguides, several
passive and active devices and elements such as bends, interferometers,
filters, resonators, and lasers have been introduced [12–15]. Although
waveguides with subwavelength mode dimensions such as coaxial and
microstrip lines have been used at microwave and lower frequencies
without a significant loss, at higher frequencies metal dissipative
loss has been an obstacle for plasmonic waveguides to find practical
application. In some of the studies in this area, it has been noted
that there is a trade-off between the confinement of a waveguide mode
and its attenuation constant [8, 16]. In this paper, it is shown that
regardless of the waveguide shape, for a given mode size, a fundamental
lower bound on the attenuation constant exists.

The existence of such a limit is a generalization of the diffraction
limit which sets a lower bound on confinement of free propagating
waves. Therefore, the approach which is used in this paper is similar to
the one used for deriving the diffraction limit. The fields are considered
in spectral domain and the waveguide is replaced with an equivalent
free current distribution. This is this current distribution which
allows for confinement beyond the diffraction limit, and because it is
supported by the lossy waveguide material, it causes the propagation
loss.

2. PROBLEM FORMULATION

A general waveguide made of a non-magnetic material with
permittivity of εr = ε′r − jε′′r surrounded by a lossless material with
permittivity of εs is considered (Fig. 1). The surrounding material
may fill the entire space around the waveguide or only the space near
the waveguide where the fields have significant values. It is assumed
that the waveguide structure has no variation in the direction of its
axis and the coordinate system is chosen in a way that its z axis is
aligned with the waveguide axis. The time dependency of ejωt and z
variation of e−jγz, γ = β−jα, are assumed where β and α are phase and
attenuation constants, respectively. The electric and magnetic fields of
a waveguide mode satisfy the Maxwell’s equations in the entire space

∇×E = −jωµ0H (1a)
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Figure 1. A general waveguide structure composed of lossy dielectrics
with relative permittivity of εr surrounded by lossless material with
permittivity of εs. z axis of the coordinate system is parallel to the
waveguide axis.

∇×H = jωε0εsE + J (1b)

∇ ·E =
j

ωε0εs
∇ · J (1c)

∇ ·H = 0 (1d)

with J representing the equivalent current density defined as

J = jωε0(ε− εs)E. (2)

ε is position dependent relative permittivity. Therefore, the waveguide
is replaced by an equivalent volume current density which is nonzero
only where the waveguide is placed and zero elsewhere. From the
Maxwell’s equations, second order equations for electric and magnetic
fields can be derived as

∇2E + k2E =
j

ωε0εs

(
k2J +∇(∇ · J)

)
(3)

∇2H + k2H = −∇× J, (4)

where k = ω
√

εsε0µ0 is the wave number in the surrounding medium.
Equation (1a) can be written as

∇× (
Eejγze−jγz

)
= −jωµ0H. (5)

Using the identity for curl of product of a scalar and a vector, left hand
side of (5) can be expended as

∇× (
Eejγz

)
e−jγz − jγ (ẑ ×E) = −jωµ0H. (6)
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Scalar multiplication of both sides of (6) by H∗ and integrating over
waveguide cross section (x-y plane) gives

S =
1
2

∫
E×H∗ ·ẑda=

ωµ0

2γ

∫
|H|2da+

e−jγz

j2γ

∫
∇×(

Eejγz
)·H∗da. (7)

Here da = dxdy is the differential of the cross sectional area and the
integrals in (7) and all other integrals in this paper are taken over
the entire cross sectional plane. S is complex power passing through
the waveguide cross section. It should be noted that for a mode with
propagation constant of γ, Eejγz has no z dependence. It is useful to
define

F , ∇× (
Eejγz

)
. (8)

The material loss of the waveguide per unit length can be found
using (2)

Pl =
1
2
Re

{∫
E · J∗da

}
=

ε′′r
2ωε0|εr − εs|2

∫
|J|2da, (9)

and using the Poynting’s theorem for an infinitesimal slice of waveguide
along its axis, the attenuation constant can be shown to be given by

α =
Pl

2Re{S} . (10)

Attenuation constant shows the waveguide propagation loss. As a
criterion for the mode confinement, the normalized second central
moment of the magnetic energy density in the waveguide cross section
can be used. For a normalized mode with

∫ |H|2da = 1, this central
moment is defined as

σ2
H =

∫
r2|H|2da−

(∫
x|H|2da

)2

−
(∫

y|H|2da

)2

. (11)

It will be shown that for an arbitrary waveguide mode with a given
value for the second central moment, a lower limit for the attenuation
constant of the mode exists. To this end, the fields are considered in
the spectral domain.

3. SPECTRAL DOMAIN EXPRESSIONS FOR
WAVEGUIDE LOSS AND MODE SIZE

The spectral domain representation of a vectorial quantity such as U is
defined as the Fourier transform of that vector in cross sectional plane
of the waveguide

Ũ(kx, ky, z) =
∫

U(x, y, z)e−j(kxx+kyy)da, (12)
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and the inverse transform is given by

U(x, y, z) =
1

4π2

∫
Ũ(kx, ky, z)ej(kxx+kyy)ds. (13)

In (13), ds = dkxdky represents the differential of area in the spectral
domain and the integrals is over the entire kx-ky plane. In the spectral
domain, (3) and (4) can be written as

Ẽ =




Ẽx

Ẽy

Ẽz


 =

1
jωε0εs(k2

r + γ2 − k2)
[M]J̃ (14)

H̃ =




H̃x

H̃y

H̃z


 =

1
(k2

r + γ2 − k2)
[B]J̃ (15)

where k2
r = k2

x + k2
y, and [M] and [B] matrices are given by

[M] =




k2 − k2
x −kxky −kxγ

−kxky k2 − k2
y −kyγ

−kxγ −kyγ k2 − γ2


 (16)

[B] =

( 0 jγ −jky

−jγ 0 jkx

jky −jkx 0

)
. (17)

Using (8) and (14) the spectral representation of F can be found as:

F̃ =
ejγz

jωε0εs(k2
r + γ2 − k2)

[N ]J̃ (18)

where [N ] is defined as

[N ] = j




kxkyγ k2
yγ −ky

(
k2 − γ2

)
−k2

xγ −kxkyγ kx

(
k2 − γ2

)
k2ky −k2kx 0


 . (19)

Now, by use of the Parseval’s theorem,∫
V∗ ·Uda =

1
4π2

∫
Ṽ†Ũds, (20)

S and Pl can be expressed in terms of spectral domain vectors.
Multiplying each side of (15) by their Hermitian transpose gives

|H̃|2 = H̃†H̃ =
1

|k2
r + γ2 − k2|2 J̃†[B]†[B]J̃. (21)

By defining
[A] , [B]†[B] (22)
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and using (20), it can be found that
∫
|H|2da =

1
4π2

∫
1

|k2
r + γ2 − k2|2 J̃

†[A]J̃ds. (23)

From (15), (18), and (20) give
∫

H∗ · Fda =
1

4π2

∫
H̃†F̃ds =

−jejγz

4π2ωε0εs

∫
1

|k2
r + γ2 − k2|2 J̃†[B]†[N ]J̃ds.

(24)

Substituting two left hand side integrals in (23) and (24) into (7) leads
to

S =
1

8π2ωε0εs

∫
1

|k2
r + γ2 − k2|2 J̃

†[Z]J̃ds, (25)

where [Z] is defined as

[Z] , 1
γ

(
k2[A]− [B]†[N ]

)
. (26)

Material loss of the waveguide can also be expressed in terms of spectral
domain volume current density. From (9) and (20), Pl can be expressed
in terms of spectral representation of the current density

Pl =
ε′′r

8π2ωε0|εr − εs|2
∫ ∣∣∣J̃

∣∣∣
2
ds. (27)

Finally, the attenuation constant of the waveguide can be found by
substituting S and Pl from (25) and (9) into (10)

α =
εsε

′′
r

2 |εr − εs|2

∫ ∣∣∣J̃
∣∣∣
2
ds

∫
1

|k2
r+γ2−k2|2 Re

{
J̃†[Z]J̃

}
ds

. (28)

As a criterion for the mode size in the spectral domain, the
normalized second central moment of the spectral domain magnetic
field modulus squared can be used. This moment is later related to
the magnetic density moment defined in (11). For a normalized mode
such that ∫ ∣∣∣H̃

∣∣∣
2
ds = 1, (29)

the second central moment of the magnetic field modulus squared in
spectral domain is defined similar to (11) as

σ2
H̃

=
∫

k2
r

∣∣∣H̃
∣∣∣
2
ds−

(∫
kx

∣∣∣H̃
∣∣∣
2
ds

)2

−
(∫

ky

∣∣∣H̃
∣∣∣
2
ds

)2

. (30)
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4. UPPER LIMIT ON THE WAVEGUIDE
PROPAGATION LENGTH

In the followings, for a given value of σ2
H̃

a lower bound for the
attenuation constant will be found and later σ2

H̃
will be related to the

σ2
H. For this goal, eigenvectors and eigenvalues of [A] can be used to

choose J̃ in a way to minimize the attenuation constant. Eigenvalues
and normalized eigenvectors of [A] can be found to be:

V̂A1 =
1
kr

[
ky

−kx

0

]
, λA1 = k2

r + |γ|2 (31a)

V̂A2 =
|γ|

kr

√
k2

r + |γ|2




kx

ky

− k2
r

γ∗


 , λA2 = k2

r + |γ|2 (31b)

V̂A3 =
1√

k2
r + |γ|2

[
kx

ky

γ

]
, λA3 = 0. (31c)

[A] is hermitian and its normalized eigenvectors are three independent,
mutually orthogonal vectors and constitute a orthonormal basis.
Therefore, the volume current density in the spectral domain can be
expanded in terms of them

J̃ = c1V̂A1 + c2V̂A2 + c3V̂A3 , (32)

where coefficients ci are functions of kx and ky. Using (28), the
attenuation constant can be expressed in terms of theses coefficients.
More specifically, |J̃|2 in the numerator of the right hand side of this
equation can be written as

∣∣∣J̃
∣∣∣
2

= |c1|2 + |c2|2 + |c3|2, (33)

and for expressing Re{J̃†[Z]J̃} in the denominator, the following
relations can be used:

[Z]V̂A1 =
(
k2β + jαk2

)
V̂A1 (34a)

[Z]V̂A2 =
(
k2β + jα

(
k2 − 2k2

r

))
V̂A2 (34b)

[Z]V̂A3 =
γ∗

|γ|kr

(
k2 − k2

r − γ2
)
V̂A2 . (34c)

Equations (34) can be verified by direct calculation of [Z] from (26)
and eigenvectors of [A] given in (31). Using these relations and (32),
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Re{J̃†[Z]J̃} can be found as

Re
{
J̃†[Z]J̃

}
=k2β

(|c1|2+|c2|2
)
+Re

{
γ∗

|γ|kr

(
k2−k2

r−γ2
)
c∗2c3

}
. (35)

plugging |J̃|2 and Re{J̃†[Z]J̃} from (33) and (35) into (28), results in:

α=
εsε

′′
r

2|εr − εs|2
∫ (|c1|2 + |c2|2

)
ds +

∫ |c3|2ds

k2β
∫ |c1|2+|c2|2
|k2

r+γ2−k2|2 ds+
∫ Re

{
γ∗
|γ|kr(k2−k2

r−γ2)c∗2c3
}

|k2
r+γ2−k2|2 ds

. (36)

The square modulus of the spectral domain magnetic field can also
be expressed in terms of the ci coefficients. Equations (21) and (32)
lead to ∣∣∣H̃

∣∣∣
2

=
k2

r + |γ|2
|k2

r + γ2 − k2|2
(|c1|2 + |c2|2

)
. (37)

It can be observed from (37) that |H̃|2 and therefore σ2
H̃

does not
depend on c3. Thus, c3 can be chosen freely to minimize the
attenuation constant. In the (36), for a given value of

∫ |c3|2ds in
the numerator, based on the Cauchy-Schwarz inequality, the integral
involving c3 in the denominator achieves its maximum when

c3 = a
krγ

|γ|(k2 − γ2 − k2
r)

c2, (38)

where a is a positive real number. Plugging in c3 from (38) into (36)
and expressing |c1|2 + |c2|2 using (37) gives

α ≥ εsε
′′
r

2 |εr − εs|2

∫ |k2
r+γ2−k2|2
k2

r+|γ|2
∣∣∣H̃

∣∣∣
2
ds + a2

∫ k2
r |c2|2

|k2
r+γ2−k2|2 ds

k2β
∫

1
k2

r+|γ|2
∣∣∣H̃

∣∣∣
2
ds + a

∫ k2
r |c2|2

|k2
r+γ2−k2|2 ds

. (39)

Let us define:

b ,
∫ ∣∣k2

r + γ2 − k2
∣∣2

k2
r + |γ|2

∣∣∣H̃
∣∣∣
2
ds (40a)

u ,
∫

k2
r |c2|2

|k2
r + γ2 − k2|2 ds (40b)

d , k2β

∫
1

k2
r + |γ|2

∣∣∣H̃
∣∣∣
2
ds (40c)

Using these definitions, (39) can be rewritten as

α ≥ εsε
′′
r

2|εr − εs|2
b + ua2

d + ua
. (41)
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Right hand side of (41) is larger than its minimum value for different
values of a and this results in

α ≥ εsε
′′
r

2|εr − εs|2
b + ua2

d + ua
≥ εsε

′′
r

|εr − εs|2
1
u

(√
bu + d2 − d

)
. (42)

It can be verified that 1
u

(√
bu + d2 − d

)
is a decreasing function of u

and its substitution by q defined as

q ,
∫

k2
r

(|c1|2 + |c2|2
)

|k2
r + γ2 − k2|2 ds =

∫
k2

r

k2
r + |γ|2

∣∣∣H̃
∣∣∣
2
ds ≥ u, (43)

results in a lower limit for 1
u(
√

bu + d2− d) and therefore for α, that is

α ≥ εsε
′′
r

|εr − εs|2
1
q

(√
bq + d2 − d

)
. (44)

In many cases of interest α
k ¿ 1 and α2 can be neglected.

Neglecting terms involving α2 in b, q, and d, defining p as p ,∫
k2

r |H̃|2ds + β2 − 2k2, and using (29), it can be found that

b = p +
k4

β2
(1− q), (45a)

d =
k2

β
(1− q). (45b)

Plugging in b and d from (45) into (44) gives

α ≥ εsε
′′
r

|εr − εs|2
1
q

(√
pq +

k4

β2
(1− q)− k2

β
(1− q)

)
, (46)

and it is easy to verify that the right hand side of the inequality (46) is
a decreasing function of q. It can also be observed from the definition
of q that 0 < q ≤ ∫ |H̃|2ds = 1, therefore putting q = 1 gives a lower
bound for that expression, that is

α >
εsε

′′
r

|εr − εs|2
√

p =
εsε

′′
r

|εr − εs|2

√∫
k2

r

∣∣∣H̃
∣∣∣
2
ds + β2 − 2k2, (47)

and from (30) it is obvious that
∫

k2
r |H̃|2ds ≥ σ2

H̃
, therefore

α >
εsε

′′
r

|εr − εs|2
√

σ2
H̃

+ β2 − 2k2. (48)

The uncertainty relation for the two dimensional Fourier transform
requires

σ2
Hσ2

H̃
≥ 1 (49)
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combining (48) and (49) and noticing that for guided modes β > k
(48) can be further simplified as

α >
εsε

′′
r

|εr − εs|2
√

1
σ2
H

− k2. (50)

Expressing attenuation constant in terms of propagation length (L =
1
α), (50) becomes

L

λ
<
|εr − εs|2

εsε′′r

1√(
λ

σH

)2
− 4π2

. (51)

5. DISCUSSION OF THE RESULT AND NUMERICAL
EXAMPLES

The inequality (51) shows that for a given waveguide mode size and
core material, there is a upper limit on the propagation length. As
it was mentioned earlier, the limit is the result of the dissipative loss
of the waveguide core material. For achieving sub-diffraction limit
confinement of waves, a nonzero equivalent current density should
exist. As it was shown, higher confinement requires a larger equivalent
current density. Because the equivalent current density is supported by
the waveguide core the higher equivalent current density means larger
dissipative loss and therefore shorter propagation length.

As it can be seen from (51), the material properties are only
present as a multiplicative factor. In particular, for waveguides with
air as surrounding material we can define a material loss merit factor
as

M , |εr − 1|2
ε′′r

(52)

This merit factor can be used for determining preferred waveguide
materials.

It is also interesting to compare the propagation lengths of some
simple plasmonic waveguides with the upper limit given in (51).
According to (51), a waveguide made of gold and surrounded by
vacuum with subwavelength mode size of σH = 100 nm at λ = 1.55 µm
(εrAu ' −95.9−j11 [17]) has a propagation length shorter than 61.02λ.
Fig. 2 shows the schematics and magnetic energy distributions of few
waveguide modes at λ = 1.55µm. The waveguides are assumed to
be made of gold and surrounded by vacuum. The fields distributions
and propagation constants of these modes are found using the Finite
Element Method (FEM). All of the waveguide modes shown in the
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(a) r = 17nm, L = 2 .2λ (b) r = 35nm, g = 35nm, L = 3 .63λ

(c) r = 50nm, g = 58nm, L = 5 .49λ (d) r = 55nm, g = 44nm, L = 5 .94λ

(e) r = 55nm, R = 155nm, L = 7 .12λ

Figure 2. Schematics and magnetic energy distributions of several
simple plasmonic waveguide modes. The shaded areas are assumed to
be gold and the unshaded ones represent vacuum. Dimensions and the
propagation lengths of modes are listed under the drawings.

Fig. 2 are designed to have σH = 100 nm. The propagation lengths
of the modes and waveguide dimensions are also presented in the
Fig. 2. As expected all of the propagation lengths are smaller than
the theoretical upper limit. Coaxial waveguide (Fig. 2(e)) has the
longest propagation length among these waveguides. However, it is
almost a factor of 9 smaller than the upper bound. More sophisticated
waveguides and waveguides with graded index materials (with the same
material loss merit factors) are expected to have longer propagation
length and better achieve the upper bound.
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6. CONCLUSION

In summary, it was shown that there is a fundamental trade-off between
loss and confinement of a general electromagnetic waveguide. As the
confinement increases, the material loss due to waveguide material
also increases which decreases the propagation length of the waveguide
mode.
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