Vol. 17
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-02-24
Efficient Simulations of Periodic Structures with Oblique Incidence Using Direct Spectral FDTD Method
By
Progress In Electromagnetics Research M, Vol. 17, 101-111, 2011
Abstract
A simple and efficient joint algorithm of finite difference time domain (FDTD) and periodic boundary condition (PBC), called as the direct spectral FDTD method, has been investigated to study three-dimensional (3D) periodic structures with oblique incidence, where both the azimuth angle φ and the elevation angle θ are varying. The number of sampling points for the horizontal wave number can be determined by using an adaptive approach. As numerical results, the transmission and reflection coefficients from split-ring resonators (SRRs) and a dielectric grating slab are computed to validate the accuracy and efficiency of the direct spectral FDTD method. The computed results are in good agreement to the published ones obtained by other methods.
Citation
Yong-Jin Zhou, Xiaoyang Zhou, Tie-Jun Cui, Rui Qiang, and Ji Chen, "Efficient Simulations of Periodic Structures with Oblique Incidence Using Direct Spectral FDTD Method," Progress In Electromagnetics Research M, Vol. 17, 101-111, 2011.
doi:10.2528/PIERM11012501
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, 2005.

2. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique incident case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 12, 1595-1607, 1993.
doi:10.1163/156939393X00020

3. Kao, Y. C. A. and R. G. Atkins, "A finite difference-time domain approach for frequency selective surfaces at oblique incidence," Proc. IEEE AP-S Int. Symp., Vol. 2, 1432-1435, 1996.

4. Roden, J. A., S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, "Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementations," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 4, 420-427, 1998.
doi:10.1109/22.664143

5. Belkhir, A. and F. I. Baida, "Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: Application to the study of a radar dome," Physical Review E, Vol. 77, No. 5, 056701, 2008.
doi:10.1103/PhysRevE.77.056701

6. Mohammad Amjadi, S. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
doi:10.2528/PIERB07122402

7. Aminian, A. and Y. Rahmat-Samii, "Spectral FDTD: A novel computational technique for the analysis of periodic structures," Proc. IEEE AP-S Int. Symp., Vol. 3, 3139-3142, 2004.

8. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of modified Maxwell's equations in the periodic finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 59, 85-100, 2006.
doi:10.2528/PIER05092601

9. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of mur's absorbing boundaries with periodic structures to speed up the design process using fiite-difference time-domain method," Progress In Electromagnetics Research, Vol. 58, 101-114, 2006.
doi:10.2528/PIER05062103

10. Ren, J., O. P. Gandhi, L. R. Walker, J. Fraschilla, and C. R. Boerman, "Floquent-based FDTD analysis of two-dimensional phased array antennas," IEEE Microwave and Guided Wave Lett., Vol. 4, No. 4, 109-111, 1994.
doi:10.1109/75.282575

11. Harms, P., R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propagat., Vol. 42, No. 9, 1317-1324, 1994.
doi:10.1109/8.318653

12. Aminian, A., F. Yang, and Y. Rahmat-Samii, "Bandwidth determination for soft and hard ground planes by spectral FDTD: A unified approach in visible and surface wave regions," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 18-28, 2005.
doi:10.1109/TAP.2004.840517

13. Yang, F., J. Chen, R. Qiang, and A. Elsherbeni, "A simple and efficient FDTD/PBC algorithm for periodic structure analysis," Radio Science, Vol. 42, No. 4, RS4004, 2007.
doi:10.1029/2006RS003526

14. Yang, F., J. Chen, R. Qiang, and A. Elsherbeni, "FDTD analysis of periodic structures at arbitrary incidence angles: A simple and e±cient implementation of the periodic boundary conditions," Proc. IEEE AP-S Int. Symp., Vol. 3, 2715-2718, 2006.

15. Attiya, A. M. and A. A. Kishk, "Modal analysis of a two-dimensional dielectric grating slab excited by an obliquely incident plane wave," Progress In Electromagnetics Research, Vol. 60, 221-243, 2006.
doi:10.2528/PIER05110602

16. Attiya, A. M., A. A. Kishk, and A. W. Glisson, "Analysis of two-dimensional magneto-dielectric grating slab," Progress In Electromagnetics Research, Vol. 74, 195-216, 2007.
doi:10.2528/PIER07042201

17. Tibuleac, S., R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, "Dielectric frequency-selective structures Dielectric frequency-selective structures," IEEE Trans. Microwave Theory Tech., Vol. 48, 553-561, 2000.
doi:10.1109/22.842027