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Abstract—A simple and efficient joint algorithm of finite difference
time domain (FDTD) and periodic boundary condition (PBC), called
as the direct spectral FDTD method, has been investigated to study
three-dimensional (3D) periodic structures with oblique incidence,
where both the azimuth angle φ and the elevation angle θ are varying.
The number of sampling points for the horizontal wave number can
be determined by using an adaptive approach. As numerical results,
the transmission and reflection coefficients from split-ring resonators
(SRRs) and a dielectric grating slab are computed to validate the
accuracy and efficiency of the direct spectral FDTD method. The
computed results are in good agreement to the published ones obtained
by other methods.

1. INTRODUCTION

Periodic structures have found more and more applications, such
as the frequency selective surfaces (FSS), the electromagnetic band-
gap (EBG) structures, and metamaterials, etc. It is of great
importance to simulate the periodic structures accurately and
efficiently using numerical methods. Finite-Difference Time-Domain
(FDTD) technique, combined with periodic boundary conditions
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(PBCs), has been shown as an effective method for the fast full-wave
characterization of these structures.

The FDTD methods proposed for periodic structures can be
classified into two categories [1]: indirect field methods based on the
field transformation technique [2] and direct field methods. The former
includes multi-spatial grid method [3], split-field method (SFM) [4–6],
spectral FDTD method [7], and exponential time differencing method
(ETD) [8, 9], etc. The later includes multiple unit cell method [10], and
sine-cosine method [11], etc. Compared with indirect methods, direct
field methods have many advantages: they have the same stability
condition and numerical error as those of the conventional FDTD
method, and have simple formulations. It also has good computational
efficiency when the incident elevation angle is near the grazing incident
angles.

The method of FDTD computation of plane-wave scattering
problems with the constant wave-number was proposed by Aminian
et al. [7], which was referred to as spectral FDTD method. Then it
was further improved and simplified [12–14]. The novelty of the simple
and efficient FDTD/PBC algorithm is that the direct computation of
E and H fields rather than the indirect calculation using auxiliary
fields [13]. Here we call the algorithm direct spectral FDTD method.
In this paper, direct spectral FDTD method is extended to compute
the scattering of periodic structures with arbitrary obliquely incident
plane waves where both the azimuth and the elevation angles vary. An
effectively adaptive method is proposed to determine the horizontal
wave-number sampling points. The final part of this paper is devoted
to studying two kinds of three-dimensional (3D) periodic structures
where both the azimuth and the elevation angles vary. One is the
split-ring resonator (SRR) and the other is a dielectric grating slab

2. FORMULATIONS

2.1. Extension of Direct Spectral FDTD Method

For a two-dimensional periodic structure shown in Figure 1, with
periodicity of a along the x direction and b along the y direction, the
periodic boundary conditions of the electric and magnetic fields in the
frequency domain are expressed as below:

H(x = 0, y, z) = H(x = a, y, z) exp(jkxa)
H(x, y = 0, z) = H(x, y = b, z) exp(jkyb)

(1)

E(x = a, y, z) = E(x = 0, y, z) exp(−jkxa)
E(x, y = b, z) = E(x, y = 0, z) exp(−jkyb)

(2)
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Figure 1. Sketch of two-dimensional periodic structure illuminated
by a plane wave propagating along the vector ~k defined by Euler angles
θ and ϕ.

where kx and ky are the horizontal wave numbers along the x and y
direction.

The main feature of direct spectral FDTD method is to fix kx

and ky. The periodic boundary conditions of the electric and magnetic
fields in the time domain are expressed as below:

H(x = 0, y, z, t) = H(x = a, y, z, t) exp(jkxa)
H(x, y = 0, z, t) = H(x, y = b, z, t) exp(jkyb)

(3)

E(x = a, y, z, t) = E(x = 0, y, z, t) exp(−jkxa)
E(x, y = b, z, t) = E(x, y = 0, z, t) exp(−jkyb)

(4)

Only the incident direction ϕ = nπ/2 was considered and the
horizontal wave-number kx was fixed [13]. In this paper, an arbitrary
ϕ angle is considered. It is implemented by fixing the horizontal wave-
number kρ, where kρ = 2πf(sin θ)/C0 (C0 is the light speed in free
space). Hence we have

kx = kρ · cosϕ0

ky = kρ · sinϕ0
(5)

where ϕ0 is a constant parameter, and ϕ = ϕ0 is the incident plane.
To avoid the horizontal resonance problem, the central frequency f of
the modulated Gaussian pulse is set to:

f =
kρ · C0

2π
+ f0 (6)

where f0 is the central frequency of the considered frequency band.
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To calculate the space distribution of the plane wave excitation,
we need to set Hx and Hy for the TMz case and Ex and Ey for the
TEz case. The formulations are as follows:

For the TMz case,

H inc
x (x, y, z0, t)=H inc

x (x, y, z0, t)−∆t·C0

∆
exp

[
−(t−t0)2

2σ2
t

]
exp(j2πft)

·exp(−jkxx) exp(−jkyy) sin ϕ0

H inc
y (x, y, z0, t)=H inc

x (x, y, z0, t)+
∆t·C0

∆
exp

[
−(t−t0)2

2σ2
t

]
exp(j2πft)

·exp(−jkxx) exp(−jkyy) cos ϕ0

(7)

For the TEz case,

Einc
x (x, y, z0, t)=Einc

x (x, y, z0, t)+
∆t·C0

∆
exp

[
−(t−t0)2

2σ2
t

]
exp(j2πft)

·exp(−jkxx) exp(−jkyy) sin ϕ0

Einc
y (x, y, z0, t)=Einc

x (x, y, z0, t)−∆t·C0

∆
exp

[
−(t−t0)2

2σ2
t

]
exp(j2πft)

·exp(−jkxx) exp(−jkyy) cos ϕ0

(8)

where ∆t is the time step, ∆ is the diagonal length of cube-cell grid, t0
is the time delay of the modulated Gaussian waveform, f is the central
frequency, σt is the pulse width, t0 is set to a value between 3σt to 5σt.

2.2. Determination of the Sampling Points for kρ

In this section, an adaptive method is proposed to determine the
number of kρ-sampling points. Suppose that the number of the
sampling points is n. For the maximum incident angle θmax and
frequency of interests fmax, the maximum horizontal wave-number
(kρ)max is defined as

(kρ)max =
2πfmax sin θmax

C0
(9)

and ki
ρ, which is horizontal wave-number for each sampling point i, is

given by

ki
ρ =

(kρ)max

n
· i, i = 0, 1, . . . , n− 1 (10)

Denoting Ri(f) as the reflection coefficient versus frequencies
corresponding to ki

ρ, Rθmax(f) as the reflection coefficient versus
frequencies corresponding to θmax, and Rn

θmax
(f) as the reflection
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coefficient versus frequencies corresponding to using n sampling points
for kρ, the maximum relative error over the frequency range of interest
is defined as

ε = max

(
R2n

θmax
(f)−Rn

θmax
(f)

R2n
θmax

(f)

)
, f = fmin, . . . , fmax (11)

The adaptive procedure is thus described as below:
1) Select an original value of n, and compute ki

ρ, i = 0, 1, . . . , n−1.
For each ki

ρ, run the simulation to obtain Ri(f). After the whole n-step
simulations, calculate Rn

θmax
(f) via the following formula:

Rn
θmax

(f) = Ri(f) +
kρ − ki

ρ

ki+1
ρ − ki

ρ

·Ri+1(f), i = 0, 1, . . . , n− 2 (12)

where,

kρ =
2πf sin θmax

C0
, ki

ρ ≤ kρ ≤ ki+1
ρ (13)

2) Calculate ki′
ρ = (kρ)max

2n · i′, i′ = 1, 3, . . . , 2n − 1. For each ki′
ρ ,

run the simulation to obtain Ri′(f). Then compute R2n
θmax

(f) and ε
according to (11)–(12).

3) If ε is within the tolerance, stop; else, set n = 2n, and go back
to step 2).

The initial value of n can be an arbitrary even value. In this
paper, n = 12 is adopted. Using this method, the same number of
sampling points needs to be calculated at each step. As a result, much
computational cost can be saved. Further more, this method is very
suitable for parallel computation by assigning the jobs according to
horizontal wave-number sample points.

Let us take the structure in Figure 2 as an example to illustrate
the method. The dimensions in the figure are: a = 5.6mm, b = 5mm,
c = d = 0.3mm, the relative permittivity of the substrate is 4.8, and
the height is 3.6 mm. The maximum incident angle is θmax = 60◦. The
original number of sampling points is chosen as 12. The transmission
coefficient simulated with FDTD over 6.5GHz∼13.5GHz is shown
in Figure 3. The relative error ε satisfies the accuracy requirement
ε < 0.05 after two iterations (24 sampling points were calculated).

3. NUMERICAL EXAMPLES

In this section, two periodic structures are simulated to validate the
accuracy of the direct spectral FDTD method (DSFDTD). The first
structure is the split-ring resonator (SRR) shown in Figure 2. The
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dimensions are given in Section 2.2. Since the periodic length is small
relative to the resonance wavelength, only the dominant mode works.
Here the frequency-domain solver of CST Microwave Studio (CST
MWS) 2009 is chosen to compute the transmission coefficients of TE00

and TM00 modes. The calculated transmission coefficients for θ =
40◦ both in TEz and TMz are shown in Figures 4(a) and (b). The
computed results by the direct spectral FDTD method are compared
with those calculated by CST MWS for ϕ = 30◦ and ϕ = 60◦. It can
be seen that those results agree very well.

The second structure is a dielectric grating slab shown in
Figure 5(a). The structure is not very simple to be studied because
its spectral responses exhibit some singularities that are very hard

Figure 2. The sketch for the
single split ring resonator (SRR)
structure.

Figure 3. The transmission co-
efficient over 6.5GHz∼13.5GHz
at θ = 60◦, ϕ = 60◦.

(a) (b)

Figure 4. The transmission coefficients of SRR (a) θ = 40◦, TEz; (b)
θ = 40◦, TMz.
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(a) (b)

(c) (d)

Figure 5. (a) the sketch of the slab-grating; (b) TEz reflection
coefficients of a two-dimensional grating with εb = 4, εa = 10,
lx = ly = 10 mm, Dx = Dy = 20 mm, h = 2 mm, θ = 30◦ and
f = 10 GHz; (c) and (d) TEz and TMz transmission coefficients of
a one-dimensional grating with εb = 1, εa = 2.59, tan δ = 0.0067,
lx = 30 mm, ly = 15 mm, Dx = Dy = 30 mm, h = 8.7mm, ϕ = 90◦
and θ = 1◦.

to handle by a theoretical or a numerical method [5]. Firstly, a
one-dimensional dielectric grating slab with εb = 1, εa = 2.59, and
Dx = Dy = 30 mm is analyzed. The dimension of the dielectric rod is
30mm×15mm. The loss tangent of the rods is tan δ = 0.0067. The
thickness of the substrate is h = 8.7mm. The direction of the incident
plane wave is ϕ = 90◦ and θ = 1◦. The transmission coefficients of the
dielectric grating for both TEz and TMz incident waves are calculated.
The vectorial modal method (VMM) is a semi-analytical technique
which has been used to model two-dimensional (2D) dielectric grating
and magneto-dielectric grating slab [15, 16]. We compare our results
for the one-dimensional dielectric grating slab with the calculated
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The reflection coefficients of a two-dimensional grating with
εb = 4, εa = 10, lx = ly = 10 mm, Dx = Dy = 20 mm, h = 2 mm and
ϕ = 0◦. (a) θ = 0◦, TEz; (b) θ = 0◦, TMz; (c) θ = 15◦, TEz; (d)
θ = 15◦, TMz; (e) θ = 30◦, TEz; (f) θ = 30◦, TMz.

results with the vectorial modal method and the experiment results of
Tibuleac et al. [17]. These results are presented in Figures 5(c) and (d)
and show good agreements. Next, a two-dimensional dielectric grating
slab with lx = ly = 10mm, Dx = Dy = 20mm, εa = 10, εb = 4 is
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calculated. The thickness of the substrate is 2 mm. Figure 5(b) shows
the reflection coefficients of the grating slab in TMz polarization for
θ = 30◦ with respect to ϕ. The observed frequency is f = 10GHz. We
compare our results with the vectorial modal method and the split-
field method (SFM) [5]. Comparisons show small discrepancies. The
calculation error can be related to the spatial discretization because
the FDTD becomes accurate only if this spatial step tends to zero. It
is excepted that the calculation error decreases when the spatial step
becomes smaller. Then the ϕ angle is fixed to be zero degree and the
calculated reflection coefficients for θ = 0◦, θ = 15◦, and θ = 30◦ both
in TEz and TMz are shown in Figure 6. Comparisons between above
two methods (VMM and SFM) and the direct spectral FDTD method
are made except for θ = 0◦ and TMz polarization. Once again, good
agreements between these results are observed.

4. CONCLUSIONS

In this paper, the direct spectral FDTD method is extended to compute
the scattering of periodic structures when plane waves are incident
from an arbitrary angle where both the azimuth and the elevation
angles vary. An adaptive method is proposed to determine the
horizontal wave-number sampling points. Numerical results show that
this method is robust and accurate.
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