Vol. 115
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-18
Metrics for Performance Evaluation of Preprocessing Algorithms in Infrared Small Target Images
By
Progress In Electromagnetics Research, Vol. 115, 35-53, 2011
Abstract
Image preprocessing is commonly used in infrared (IR) small target detection to suppress background clutter and enhance target signature. To evaluate the performance of preprocessing algorithms, two performance metrics, namely PFTN (potential false targets number) decline ratio and BRI (background relative intensity) decline ratio are developed in this paper. The proposed metrics evaluate the performance of given preprocessing algorithm by comparing the qualities of input and output images. The new performance metrics are based on the theories of PFTN and BRI, which describe the quality of IR small target image, by representing the difficulty degree of target detection. Theoretical analysis and experimental results show that the proposed performance metrics can accurately reflect the effect of the image preprocessing stage on reducing false alarms and target shielding. Compared to the traditional metrics, such as signal-to-noise ratio gain and background suppression factor, the new ones are more intuitive and valid.
Citation
Wei-He Diao, Xia Mao, and Vasile Gui, "Metrics for Performance Evaluation of Preprocessing Algorithms in Infrared Small Target Images," Progress In Electromagnetics Research, Vol. 115, 35-53, 2011.
doi:10.2528/PIER11012412
References

1. Gong, Q. Y. and Z. D. Zhu, "Study stap algorithm on interference target detect under nonhomogenous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
doi:10.2528/PIER09101502

2. Crowgey, B. R., E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.
doi:10.2528/PIER10091306

3. Tsai, H. C., "Investigation into time- and frequency-domain EMI-induced noise in bistable multivibrator," Progress In Electromagnetics Research, Vol. 100, 327-349, 2010.
doi:10.2528/PIER09112904

4. Maskooki, A., E. Gunawan, C. B. Soh, and K. S. Low, "Frequency domain skin artifact removal method for ultra-wideband breast cancer detection," Progress In Electromagnetics Research, Vol. 98, 299-314, 2009.
doi:10.2528/PIER09101302

5. Crowgey, B. R., E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.
doi:10.2528/PIER10091306

6. Ffrench, P. A., J. R. Zeidler, and W. H. Ku, "Enhanced detectability of small objects in correlated clutter using an improved 2-D adaptive lattice algorithm," IEEE Transactions on Image Processing, Vol. 6, No. 3, 383-397, 1997.
doi:10.1109/83.557341

7. Khan, J. F. and M. S. Alam, "Target detection in cluttered forward-looking infrared imagery," Optical Engineering, Vol. 44, No. 7, 0764041-0764048, 2005.
doi:10.1117/1.1950147

8. Yang, L., J. Yang, and K. Yang, "Adaptive detection for infrared small target under sea-sky complex background," Electronics Letters, Vol. 40, No. 17, 1803-1805, 2004.
doi:10.1049/el:20045204

9. Barnett, J., "Statistical analysis of median subtraction filtering with application to point target detection in infrared back-grounds," Proc. of SPIE, Vol. 1050, 10-18, 1989.

10. Kaplan, L. M., "Small target detection in clutter using recursive nonlinear prediction," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, 713-717, 2000.
doi:10.1109/7.845269

11. Huang, C. W. and K. C. Lee, "Frequency-diversity RCS based target recognition with ica projection," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2547-2559, 2010.
doi:10.1163/156939310793675763

12. Yang, L., Y. Zhou, J. Yang., and L. Chen, "Variance WIE based infrared images processing," Electronics Letters, Vol. 42, No. 15, 857-859, 2006.
doi:10.1049/el:20060827

13. Xiong, Y., et al. "An extended track-before-detect algorithm for infrared target detection," IEEE Transactions on Aerospace and Electronic Systems, Vol. 33, No. 3, 1087-1092, 1997.
doi:10.1109/7.599339

14. Hilliard, C. I., "Selection of a clutter rejection algorithm for real-time target detection from an airborne platform," Proc. SPIE, Vol. 4048, 74-78, 2000.
doi:10.1117/12.392022

15. Chan, D. S. K., D. A. Langan, and D. A. Stayer, "Spatial processing techniques for the detection of small targets in IR clutter," Proc. SPIE, Vol. 1305, 53-62, 1990.
doi:10.1117/12.21579

16. Mao, X. and W.-H. Diao, "Criterion to evaluate the quality of infrared small target images," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, No. 1, 56-64, 2009.
doi:10.1007/s10762-008-9410-5

17. Xu, J., Research on the detection of small and dim targets in infrared images, Ph.D. Thesis, Xi Dian University, 2001.

18. Yonoviz, D., "Tunable wavelet target extraction preprocessor," Proc. of SPIE, Vol. 6569, 1-12, 2007.

19. Yang, L., J. Yang, and K. Yang, "Adaptive detection for infrared small target under sea-sky complex background," Electronics Letters, Vol. 40, No. 17, 1083-1085, 2004.
doi:10.1049/el:20045204

20. Song, H. B., H. G. Wang, K. Hong, and L. Wang, "A novel source localization scheme based on unitary esprit and city electronic maps in urban environments," Progress In Electromagnetics Research, Vol. 94, 243-262, 2009.
doi:10.2528/PIER09051703

21. Lee, H. H., J. H. Lee, H. K. Song, and C. K. Song, "Simple and efficient received signal detection technique using channel information for mimo-ofdm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1417-1428, 2009.
doi:10.1163/156939309789476266

22. Tsen, W. F. and H. J. Li, "Optimal impedance matching for capacity maximization of MIMO systems with coupled antennas and noisy amplilfiers," Progress In Electromagnetics Research C, Vol. 15, 23-36, 2010.
doi:10.2528/PIERC10050301

23. Nevis, A., "Image characterization and target recognition the surf zone environment," Proc. of SPIE, Vol. 2765, 46-58, 1996.
doi:10.1117/12.241263

24. Otsu, N., "A threshold selection method from gray-level histograms," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 919-926, 1979.

25. Trievdi, M. M. and M. V. Schirvaikar, "Quantitative characterization of image clutter: Problems, progress, and promises," Characterization, Propagation, and Simulation of Sources and Backgrounds, 288-299, 1993.

26. Li, M. and G. Zhang, "Image measures for segmentation algorithm evaluation of automatic target recognition system," 1st International Symposium on Systems and Control in Aerospace and Astronautics, 673-679, 2006.

27. Victor, T., "Morphology-based algorithm for point target detection in infrared backgrounds," Proc. of SPIE, Vol. 1954, 2-11, 1993.

28. Reed, I. S. and R. M. Gagliardi, "Optical moving target detection with 3-D matched filtering," IEEE Transactions on Aerospace and Electronic System, Vol. 24, No. 4, 327-336, 1988.
doi:10.1109/7.7174