Vol. 114
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-24
Highly Birefringent Four-Hole Fiber for Pressure Sensing
By
Progress In Electromagnetics Research, Vol. 114, 145-158, 2011
Abstract
A highly birefringent four-hole fiber (FHF) with a pair of large air holes and a pair of small air holes are proposed for air/hydrostatic pressure sensing. The birefringence of the FHF can be up to 0.01 due to the rectangle-like fiber core surrounded by four air holes. Therefore, a FHF with a length of only several centimeters is required for high-sensitivity pressure sensing based on a Sagnac interferometer. Optical properties of the FHF such as effective index and birefringence are investigated. Pressure sensor based on the FHF depends on the pressure-induced refractive index change or pressure-induced birefringence. The stress distribution of the FHF subjected to an air/hydrostatic pressure is represented. Simulations show that the principal stress component parallel to the slow axis of the of the FHF under the air/hydrostatic pressure is greatly enhanced due to the existence of two large air holes, which consequently results in a high sensitivity of the FHF-based pressure sensor. Relationships between the pressure-induced birefirngence and the radius of the large air hole, the external diameter of the FHF, or the ellipticity of the elliptical FHF are investigated. The polarimetric pressure sensitivity of the FHF can be up to 607 rad/MPa/m.
Citation
Daru Chen, Ming-Leung Vincent Tse, Chuang Wu, Hongyan Fu, and Hwa-Yaw Tam, "Highly Birefringent Four-Hole Fiber for Pressure Sensing," Progress In Electromagnetics Research, Vol. 114, 145-158, 2011.
doi:10.2528/PIER11012403
References

1. Budiansky, B., D. C. Drucker, G. S. Kino, and J. R. Rice, "Pressure sensitivity of a clad optical fiber," Appl. Opt., Vol. 18, 4085-4088, 1979.
doi:10.1364/AO.18.004085

2. Bock, W. J. and A. W. Domanski, "High hydrostatic pressure effects in highly birefringent optical fibers," J. Lightwave Technol., Vol. 7, 1279-1283, 1989.
doi:10.1109/50.32394

3. Chiang, K. S. and D. Wong, "Hydrostatic pressure induced birefringence in a highly birefringent optical fiber," Electron. Lett., Vol. 26, 1952-1954, 1990.
doi:10.1049/el:19901263

4. Chiang, K. S., "Pressure-induced birefringence in a coated highly birefringent optical fiber ," J. Lightwave Technol., Vol. 8, 1850-1855, 1990.
doi:10.1109/50.62882

5. Wang, A., S. He, X. Fang, X. Jin, and J. Lin, "Optical fiber pressure sensor based on photoelasticity and its application," J. Lightwave Technol., Vol. 10, 1466-1472, 1992.
doi:10.1109/50.166790

6. Wolinski, T. R. and W. J. Bock, "Birefringence measurement under hydrostatic pressure in twisted highly birefringent fibers," IEEE Trans. Instrum. Meas., Vol. 44, 708-711, 1995.
doi:10.1109/19.387314

7. Ma, J., W. Tang, and W. Zhou, "Optical-fiber sensor for simultaneous measurement of pressure and temperature: Analysis of cross sensitivity ," Appl. Opt., Vol. 35, 5206-5210, 1996.
doi:10.1364/AO.35.005206

8. Charasse, M. N., M. Turpin, and J. P. Le Pesant, "Dynamic pressure sensing with a side-hole birefringent optical fiber," Opt. Lett., Vol. 16, 1043-1045, 1991.
doi:10.1364/OL.16.001043

9. Clowes, J. R., S. Syngellakis, and M. N. Zervas, "Pressure sensitivity of side-hole optical fiber sensors," IEEE Photon. Technol. Lett., Vol. 10, 857-859, 1998.
doi:10.1109/68.681509

10. Zhao, Y. and F. Ansari, "Instrinsic single-mode fiber-optic pressure sensor," IEEE Photon. Technol. Lett., Vol. 13, 1212-1214, 2001.
doi:10.1109/68.959367

11. Nawrocka, M. S., W. J. Bock, and W. Urbanczyk, "Dynamic high-pressure calibration of the fiber-optic sensor based on birefringent silde-hole fibers," J. Sens., Vol. 5, 1011-1018, 2005.
doi:10.1109/JSEN.2005.845190

12. Frazao, O., S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, "Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber ," Appl. Opt., Vol. 47, 4841-4848, 2008.
doi:10.1364/AO.47.004841

13. Statkiewicz, G., T. Martynkien, and W. Urbanczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain ," Opt. Communications, Vol. 241, 339-348, 2004.
doi:10.1016/j.optcom.2004.07.021

14. Szpulak, M., T. Martynkien, and W. Urbanczyk, "Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers," Appl. Opt., Vol. 43, 4739-4744, 2004.
doi:10.1364/AO.43.004739

15. MacPherson, W. N., E. J. Rigg, J. D. C. Jones, V. V. Ravi Kanth Kumar, J. C. Knight, and P. St. J. Russell, "Finite-element analysis and experimental results for a microstructured fiber with enhance hydrostatic pressure sensitivity," J. Lightwave Technol., Vol. 23, 1227-1231, 2005.
doi:10.1109/JLT.2004.839988

16. Bock, W. J., J. Chen, and W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurement," IEEE Trans. Instrum. Meas., Vol. 55, 1119-1123, 2006.
doi:10.1109/TIM.2006.876591

17. Martynkien, T., , G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpot, "Measurements of polarimetric sensitivity to temperature in birefringent holey fibres ," Meas. Sci. Technol., Vol. 18, 3055-3060, 2007.
doi:10.1088/0957-0233/18/10/S02

18. Shinde, Y. S. and H. K. Gahir, "Dynamic pressure sensing study using photonic crystal fiber: application to tsunami sensing," IEEE Photon. Technol. Lett., Vol. 20, 279-281, 2008.
doi:10.1109/LPT.2007.913741

19. Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, "Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer," Appl. Opt., Vol. 47, 2835-2839, 2008.
doi:10.1364/AO.47.002835

20. Oliveira, R. E. P. de, C. J. S. de Matos, J. G. Hayashi, and C. M. B. Cordeiro, "Pressure sensing based on nonconventional air-guiding transmission windows in hollow-core photonic crystal fibers," J. Lightwave Technol., Vol. 27, 1605-1609, 2009.
doi:10.1109/JLT.2009.2014648

21. Szczurowski, M. K., T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D. J. Webb, "Measurements of polarimentric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber," Opt. Express, Vol. 18, 12076-12087, 2010.
doi:10.1364/OE.18.012076

22. Martynkien, T., G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Skorupski, M. Makara, J. Klimek, K. Poturaj, W.Urbanczyk, T. Nasilowski, F. Berghmanst, and H. Thienpont, "Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure," Opt. Express, Vol. 18, 15113-15121, 2010.
doi:10.1364/OE.18.015113

23. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russel, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.
doi:10.1364/OL.25.001325

24. Chau, Y.-F., H.-H. Yeh, and D. P. Tsai, "Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding," Jpn. J. Appl. Phys., Vol. 46, 1048-1051, 2007.
doi:10.1143/JJAP.46.L1048

25. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040

26. Chen, D. and H. Chen, "Highly birefringent low-loss terahertz waveguide: Elliptical polymer tube," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1553-1562, 2010.
doi:10.1163/156939310792149623

27. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804

28. Chau, Y.-F., C.-Y. Liu, H.-H. Yeh, and D. P. Tsai, "A comparative study of high birefringence and low confinement loss photonic crystal ¯ber employing elliptical air holes in fiber cladding with tetragonal lattice," Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010.
doi:10.2528/PIERB10042405

29. Chen, D., M.-L. V. Tse, and H. Y. Tam, "Optical properties of photonic crystal ¯bers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 687-697, 2001.

30. Ferrando, A., E. Silvestre, P. Andres, J. Miret, and M. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express, Vol. 9, 687-697, 2001.
doi:10.1364/OE.9.000687

31. Huttunen, A. and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express, Vol. 13, 627-635, 2005.
doi:10.1364/OPEX.13.000627

32. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309

33. Agrawal, A., N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan , "Golden spiral photonic crystal fiber: Polarization and dispersion properties," Opt. Lett., Vol. 33, 2716-2718, 2008.
doi:10.1364/OL.33.002716

34. Agrawal, A., N. Kejalakshmy, B. M. A. Rahman, and K. T. V. Grattan, "Polarization and dispersion properties of elliptical hole golden spiral photonic crystal fiber," Appl. Phys. B, Vol. 99, 717-726, 2010.
doi:10.1007/s00340-010-4023-9

35. Folkenberg, J. R., M. D. Nielsen, and C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett., Vol. 30, 1446-1448, 2005.
doi:10.1364/OL.30.001446

36. Zhang, F., M. Zhang, X. Liu, and P. Ye, "Design of wideband single-polarization single-mode photonic crystal fiber," J. Lightwave Technol., Vol. 25, 1184-1189, 2007.
doi:10.1109/JLT.2007.893031

37. Lin, A., Z. Zheng, Z. Li, T. Zhou, and J. Cheng, "Ultra-wideband single-polarization single-mode, high nonlinearity photoniccrystal fiber," Opt. Communications, Vol. 241, 339-348, 2009.

38. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.
doi:10.1364/OE.15.015365

39. Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett., Vol. 28, 393-395, 2003.
doi:10.1364/OL.28.000393

40. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-823, 2003.
doi:10.1364/OE.11.000818

41. Li, J., J. Wang, and F. Jing, "Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1113-1124, 2010.
doi:10.1163/156939310791586070

42. Saitoh, K. and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron., Vol. 38, 927-933, 2002.
doi:10.1109/JQE.2002.1017609

43. Wu, C., B. O. Guan, Z. Wang, and X. Feng, "Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers," J. Lightwave Technol., Vol. 28, 1392-1397, 2010.