Vol. 116
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-04-19
Inverse Scattering of Three-Dimensional PEC Objects Using the Level-Set Method
By
Progress In Electromagnetics Research, Vol. 116, 23-47, 2011
Abstract
A 3D shape reconstruction algorithm for multiple PEC objects immersed in air is presented. The Hamilton-Jacobi PDE is solved in the entire computational domain with employing the marching cubes method to retrieve the evolving objects. The method of moment surface integral equation is used as the forward solver. An appropriate form of the deformation velocity, based on the forward and adjoint fields, is implemented to minimize the mismatch between the reference and evolving objects. The inversion algorithm showed good shape reconstruction results even using limited view data or noise corrupted data down to SNR of 5 dB.
Citation
Mohammad Reza Hajihashemi, and Magda El-Shenawee, "Inverse Scattering of Three-Dimensional PEC Objects Using the Level-Set Method," Progress In Electromagnetics Research, Vol. 116, 23-47, 2011.
doi:10.2528/PIER11012304
References

1. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

2. Caramanica, F. and G. Oliveri, "An innovative multi-source strategy for enhancing the reconstruction capabilities of inverse scattering techniques ," Progress In Electromagnetics Research, Vol. 101, 349-374, 2010.
doi:10.2528/PIER09120803

3. Solimene, R., A. Brancaccio, R. Di Napoli, and R. Pierri, "3D sliced tomographic inverse scattering experimental results," Progress In Electromagnetics Research, Vol. 105, 1-13, 2010.
doi:10.2528/PIER10050705

4. Ramm, A. G., "Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering," Springer, 2004.

5. Pastorino, M., "Recent inversion procedures for microwave imaging in biomedical, subsurface detection and nondestructive evaluation applications ," Imaging Measurement Systems, Vol. 36, No. 3-4, 257-269, Oct.-Dec. 2004.

6. El-Shenawee, M. and E. Miller, "Spherical harmonics microwave algorithm for shape and location reconstruction of breast cancer tumor ," IEEE Transactions on Medical Imaging, Vol. 25, No. 10, 1258-1271, Oct. 2006.
doi:10.1109/TMI.2006.881377

7. Huang, H., X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, "A multi-phase level set framework for source reconstruction in bioluminescence tomography ," Journal of Computational Physics, Vol. 229, No. 13, 5246-5256, Jul. 2010.
doi:10.1016/j.jcp.2010.03.041

8. Hohage, T., "Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem," Journal of Computational Physics, Vol. 214, No. 1, 224-238, May 2006.
doi:10.1016/j.jcp.2005.09.025

9. Hea, L., S. Kindermannb, and M. Sin, "Reconstruction of shapes and impedance functions using few far-field measurements," Journal of Computational Physics, Vol. 228, No. 3, 717-730, Feb. 2009.
doi:10.1016/j.jcp.2008.09.029

10. Baoa, G., S. Houb, and P. Li, "Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm," Journal of Computational Physics, Vol. 227, No. 1, 755-762, Nov. 2007.
doi:10.1016/j.jcp.2007.08.020

11. Travassos, X. L., D. A. G. Vieira, N. Ida, C. Vollaire, and A. Nicolas, "Inverse algorithms for the GPR assessment of concrete structures," IEEE Transactions on Magnetics, Vol. 44, No. 6, 994-997, Jun. 2008.
doi:10.1109/TMAG.2007.916661

12. Soldovieri, F., A. Brancaccio, G. Prisco, G. Leone, and R. Pierri, "A Kirchhoff-based shape reconstruction algorithm for the multimonostatic configuration: The realistic case of buried pipes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3031-3038, Oct. 2008.
doi:10.1109/TGRS.2008.921959

13. Brignone, M., G. Bozza, A. Randazzo, M. Piana, and M. Pastorino, "A hybrid approach to 3D microwave imaging by using linear sampling and ACO ," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 10, 3224-3232, Oct. 2008.
doi:10.1109/TAP.2008.929504

14. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "3D microwave imaging via preliminary support reconstruction: Testing on the Fresnel 2008 database," Inverse Problems, Vol. 25, No. 2, Feb. 2009.
doi:10.1088/0266-5611/25/2/024002

15. Tortel, H., "Electromagnetic imaging of a three-dimensional perfectly conducting object using a boundary integral formulation," Inverse Problems, Vol. 20, 385-398, 2004.
doi:10.1088/0266-5611/20/2/005

16. Catapano, I., L. Crocco, and T. Isernia, "Improved sampling methods for shape reconstruction of 3-D buried targets," IEEE Trans. on Geoscience and Remote Sensing, Vol. 46, No. 10, 3265-3273, Oct. 2008.
doi:10.1109/TGRS.2008.921745

17. Yu, C., M. Yuan, and Q. H. Liu, "Reconstruction of 3D objects from multi-frequency experimental data with a fast DBIM-BCGS method," Inverse Problems, Vol. 25, No. 2, Feb. 2009.
doi:10.1088/0266-5611/25/2/024007

18. Vouldis, A. T., C. N. Kechribaris, T. A. Maniatis, K. S. Nikita, and N. K. Uzunoglu, "Investigating the enhancement of three-dimensional di®raction tomography by using multiple illumination planes," Journal of Optical Society of America, Vol. 22, No. 7, 1251-1262, Jul. 2005.

19. Zaeytijd, J. D., A. Franchois, C. Eyraud, and J. M. Geffrin, "Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method --- Theory and experiment," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 11, 3279-3292, Nov. 2007.
doi:10.1109/TAP.2007.908824

20. Saeedfar, A. and K. Barkeshli, "Shape reconstruction of three-dimensional conducting curved plates using physical optics, nurbs modeling, and genetic algorithm," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
doi:10.1109/TAP.2006.880662

21. Solimene, R., A. Buonanno, R. Pierri, and F. Soldovieri, "Shape reconstruction of 3D metallic objects via a physical optics distributional approach," AEU International Journal of Electronics and Communications, Vol. 64, No. 2, 142-151, Feb. 2010.
doi:10.1016/j.aeue.2008.11.011

22. Banasiak, R. and M. Soleimani, "Shape based reconstruction of experimental data in 3D electrical capacitance tomography," NDT & E International, Vol. 43, No. 3, 241-249, Apr. 2010.
doi:10.1016/j.ndteint.2009.12.001

23. Çayören, M., I. Akduman, A. Yapa, and L. Crocco, "A new algorithm for the shape reconstruction of perfectly conducting objects,", Vol. 23, No. 3, 1100, Apr. 2007.

24. El-Shenawee, M., O. Dorn, and M. Moscoso, "An adjoint-field technique for shape reconstruction of 3-D penetrable object immersed in lossy medium," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 520-534, Feb. 2009.
doi:10.1109/TAP.2008.2011195

25. Ferrayé, R., J. Dauvignac, and C. Pichot, "An inverse scattering method based on contour deformations by means of a level set method using frequency hopping technique," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 5, May 2003.

26. Litman, A., "Reconstruction by level sets of n-ary scattering obstacles," Inverse Problems, Vol. 21, No. 6, 131-152, Dec. 2005.
doi:10.1088/0266-5611/21/6/S10

27. Van den Doel, K. and U. M. Ascher, "On level set regularization for highly ill-posed distributed parameter estimation problems," J. Computational Physics, Vol. 216, No. 2, 707-723, Aug. 2006.
doi:10.1016/j.jcp.2006.01.022

28. Hajihashemi, M. R. and M. El-Shenawee, "TE versus TM for the shape reconstruction of 2-D PEC targets using the level-set algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 3, 1159-1168, Mar. 2010.
doi:10.1109/TGRS.2009.2029698

29. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transaction on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

30. Makarov, S. N., Antenna and EM Modeling with Matlab, 1st Ed., Wiley Press, 2002.

31. FEKO User's Manual, Suite 5.3, Jul. 2007, , .

32. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC Press, 2007.

33. Sethian, J. A., Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999.

34. Osher, S. J. and R. P. Fedkiw, "Level Set Methods and Dynamic Implicit Surfaces," Springer-Verlag, 2003.

35. Roger, A., "Reciprocity theorem applied to the computation of functional derivatives of the scattering matrix ," Electro-Magnetics, Vol. 2, No. 1, 69-83, 1982.

36. Lorensen, W. E. and H. E. Cline, "Marching cubes: A high resolution 3D surface construction algorithm," Computer Graphics, Vol. 21, No. 4, Jul. 1987.

37. Nielson, G. M. and A. Huang, "Approximating normals for marching cubes applied to locally supported isosurfaces," IEEE Visualization Proceedings, 459-466, Oct. 2002.

38. Hansen, G. A., R. W. Douglass, and A. Zardecki, "Mesh Enhancement," Imperial College Press, 404, 2005.

39. Chew, W. C. and J. H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogenous bodies," IEEE Microwave and Wave Guided Letters, Vol. 5, No. 12, 439, Dec. 1995.
doi:10.1109/75.481854

40. Hajihashemi, M. R. and M. El-Shenawee, "High performance computing for the level-set reconstruction algorithm," J. of Parallel and Distributed Computing, Vol. 70, No. 6, 671-679, Jun. 2010.
doi:10.1016/j.jpdc.2009.10.001

41. Hajihashemi, M. R., Inverse scattering level set algorithm for retrieving the shape and location of multiple targets, Ph.D. Dissertation, University of Arkansas, 2010.

42. Hassan, A., M. Hajihashemi, M. El-Shenawee, A. Al-Zoubi, and A. Kishk, "Drift De-noising of experimental TE measurements for imaging of 2D PEC cylinder using the level set algorithm," IEEE Antennas and Wireless Propag. Letters, Vol. 8, 1218-1222, 2009.
doi:10.1109/LAWP.2009.2035341

43. Woten, D. A., M. R. Hajihashemi, A. M. Hassan, and M. El-Shenawee, "Experimental microwave validation of the level-set reconstruction algorithm," IEEE Transaction on Antennas and Propagation, Vol. 58, No. 1, 230-233, Jan. 2010.
doi:10.1109/TAP.2009.2036186