Vol. 113
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-02
Numerical Analysis of Enhanced Transmission through a Single Subwavelength Aperture Based on Mie Resonance Single Particle
By
Progress In Electromagnetics Research, Vol. 113, 211-226, 2011
Abstract
We numerically demonstrate that the transmission through a deep subwavelength (λ0/20) aperture in a metal plate could be greatly enhanced owing to the resonance effects of a high permittivity (κ) dielectric cube tightly coupled to the aperture. The transmission enhancement originates from the confinement and re-radiation of the electromagnetic energy impinging onto the high κ cube which operates in the 1st Mie resonance mode, and behaves as an ultra-small magnetic dipole antenna. The complex permittivity of the cube governs the operating frequency and the enhancement in terms of bandwidth and transmissivity maximum. Additionally, based on the isotropic response of the high κ cube with dimensions comparable to the aperture size, the almost independence of the enhancement properties on the illumination polarization and incidence angle was assessed.
Citation
Lei Kang, Veronique Sadaune, and Didier Lippens, "Numerical Analysis of Enhanced Transmission through a Single Subwavelength Aperture Based on Mie Resonance Single Particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011.
doi:10.2528/PIER10122705
References

1. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, 39-46, 2007.
doi:10.1038/nature05350

2. Bethe, H. A. and Theory of diffraction by small holes, Phys. Rev., Vol. 66, 163-182, 1944.
doi:10.1103/PhysRev.66.163

3. Garcia-Vidal, F. J., E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett., Vol. 95, 103901, 2005.
doi:10.1103/PhysRevLett.95.103901

4. Chang, C. W., A. K. Sarychev, and V. M. Shalaev, "Light di®raction by a subwavelength circular aperture," Laser Phys. Lett., Vol. 2, 351-355, 2005.
doi:10.1002/lapl.200510006

5. Popov, E., N. Bonod, M. Neviµere, H. Rigneault, P.-F. Lenne, and P. Chaumet, "Surface plasmon excitation on a single subwavelength hole in a metallic sheet," Appl. Opt., Vol. 44, 2332-2337, 2005.
doi:10.1364/AO.44.002332

6. Webb, K. J. and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B, Vol. 73, 033401, 2006.
doi:10.1103/PhysRevB.73.033401

7. Garcia de Abajo, F., "Light transmission through a single cylindrical hole in a metallic ¯lm," Opt. Express, Vol. 10, 1475-1484, 2002.

8. Popov, E., M. Neviere, A. Sentenac, N. Bonod, A.-L. Fehrembach, J. Wenger, P.-F. Lenne, and H. Rigneault, "Single-scattering theory of light di®raction by a circular subwavelength aperture in a finitely conducting screen," J. Opt. Soc. Am. A, Vol. 24, 339-358, 2007.
doi:10.1364/JOSAA.24.000339

9. Michalski, K. A., "Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011.

10. Obermuller, C. and K. Karrai, "Far-field characterization of diffracting apertures," Appl. Phys. Lett., Vol. 67, 3408-3410, 1995.
doi:10.1063/1.115262

11. Degiron, A., H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal ," Opt. Commun., Vol. 239, 61-66, 2004.
doi:10.1016/j.optcom.2004.05.058

12. Yin, L., V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface palsmons at single nanoholes in Au films," Appl. Phys. Lett., Vol. 85, 467-469, 2004.
doi:10.1063/1.1773362

13. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, 2002.
doi:10.1126/science.1071895

14. Akarca-Biyikli, S. S., I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett., Vol. 85, 1098-1100, 2004.
doi:10.1063/1.1783013

15. Aydin, K., A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, "Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture ," Phys. Rev. Lett., Vol. 102, 013904, 2009.
doi:10.1103/PhysRevLett.102.013904

16. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techn., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

17. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix ," IEEE Trans. Antennas Propag., Vol. 51, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563

18. Schuller, J. A., R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles ," Phys. Rev. Lett., Vol. 99, 107401, 2007.
doi:10.1103/PhysRevLett.99.107401

19. Popa, B. and S. A. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Phys. Rev. Lett., Vol. 100, 207401, 2008.
doi:10.1103/PhysRevLett.100.207401

20. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402

21. Nemec, H., P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, "Tunable terahertz metamaterials with negative permeability," Phys. Rev. B, Vol. 79, 241108(R), 2009.

22. Zhang, F., Q. Zhao, L. Kang, J. Zhou, and D. Lippens, "Experimental vericafition of isotropic and polarization properties of high permittivity-based metamaterial," Phys. Rev. B, Vol. 80, 195119, 2009.
doi:10.1103/PhysRevB.80.195119

23. Zhao, Q., J. Zhou, F. Zhang, and D. Lippens, "Mie resonance based dielectric metamaterial," Materials Today, Vol. 12, 60, 2009.
doi:10.1016/S1369-7021(09)70318-9

24. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.

25. Balanis, C., Antenna Theory, Analysis, and Design, 2nd Ed., Wiley, New York, 1997.

26. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.

27. Vendik, O. G., L. T. Ter-Martirosyan, and S. P. Zubko, "Microwave losses in incipient ferroelectrics as functions of the temperature and the biasing field," J. Appl. Phys., Vol. 84, 993-998, 1998.
doi:10.1063/1.368166

28. Geyer, R. G., B. Riddle, J. Krupka, and L. A. Boatner, "Microwave dielectric properties of single-crystal quantum paraelectrics KTaO3 and SrTiO3 at cryogenic temperatures," J. Appl. Phys., Vol. 97, 104111, 2005.
doi:10.1063/1.1905789

29. Vendik, O. G. and S. P. Zubko, "Modeling the dielectric response of incipient ferroelectrics," J. Appl. Phys., Vol. 82, 4475-4483, 1997.
doi:10.1063/1.366180

30. Shaw, T. M., Z. Suo, M. Huang, E. Liniger, R. B. Laibowitz, and J. D. Baniecki, "The effect of stress on the dielectric properties of barium strontium titanate thin films," Appl. Phys. Lett., Vol. 75, 2129-2131, 1999.
doi:10.1063/1.124939

31. Molla, J., M. Gonzalez, R. Vila, and A. Ibarra, "Effect of humidity on microwave dielectric losses of porous alumina," J. Appl. Phys., Vol. 85, 1727-1730, 1999.
doi:10.1063/1.369317

32. Zhao, Q., B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, "Tunable negative permeability in an isotropic dielectric composite," Appl. Phys. Lett., Vol. 92, 051106, 2008.
doi:10.1063/1.2841811