1. FCC, , Final Rule of the Federal Communications Commission, Vol. 67, No. 95, 47 CFR, Part 15, Sec. 503, Federal Register, May 2002.
2. WiMedia, Alliance, "Multiband OFDM physical layer specifications: Physical specification: Final deliverable Version 1.5,", 2009.
3. UWB Forum, www.uwbforum.org.
doi:10.1109/WCSP.2009.5371726
4. Murad, S. A. Z., R. K. Pokharel, H. Kanaya, and K. Yoshida, "A 3.0--7.5 GHz CMOS UWB PA for group 1~3 MB-OFDM application using current-reused and shunt-shunt feedback," IEEE International Conference on Wireless Communications and Signal Processing (WCSP 2009), 1-4, 2009.
doi:10.2528/PIER10041808
5. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenny, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
6. Lee, S.-Y. and G.-D. Lu, "A UWB CMOS power amplifier with differential to single-ended converter," IEEE International Symposium on VLSI Design (VAD), 314-317, 2007.
doi:10.1163/156939310791036412
7. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves Applications, Vol. 24, No. 5--6, 619-630, 2010.
doi:10.1109/ISCAS.2005.1465784
8. Jose, S., H. J. Lee, H. Dong, and S. S. Choi, "A low power CMOS power amplifier for ultra wideband (UWB) applications," IEEE International Symposium on Circuits and Systems, 5111-5114, 2005.
9. Han, C. H., W. W. Zhi, and K. M. Gin, "A low power CMOS full-band UWB power amplifier using wideband RLC matching method," IEEE Conference on Electron Devices and Solid-State Circuit, 223-236, 2005.
10. Lu, C., A. V. Pham, and M. Shaw, "A CMOS power amplifier for full-band UWB transmitters," IEEE Symposium on Radio Frequency Integrated Circuit, 397-400, 2006.
doi:10.1109/APCCAS.2006.342446
11. Wang, R. L., Y. K. Su, and C. Liu, "3--5 GHz cascoded UWB power amplifier," IEEE Asia Pacific Conference on Circuits and Systems, 367-369, 2006.
doi:10.1163/156939310793675619
12. Lee, M.-W., S.-H. Kam, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves Applications, Vol. 24, No. 17--18, 2537-2545, 2010.
13. Ellinger, F., Radio Frequency Integrated Circuits and Technologies, Springer-Verlag Berlin Heidelberg, 2007.
14. Lee, T. H., The Design of CMOS Radio-frequency Integrated Circuits, 2nd Ed., Cambridge Univ. Press, 2004.
doi:10.2528/PIER10060806
15. Zhang, B., Y.-Z. Xiong, L. Wang, S. Hu, T.-G. Lim, Y.-Q. Zhuang, and L.-W. Li, "A D-band power amplifier with 30-GHz bandwidth and 4.5-dBm psat for high-speed communicationc system," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010.
16. Anderson, S., C. Svensson, and O. Drugge, "Wideband LNA for a multistandard wireless receiver in 0.18 μm process," European Solid-State Circuits Conference, 655-658, 2003.
doi:10.2528/PIER09071609
17. Jimenez Martin, J. L., V. Gonzalez-Posadas, J. E. Gonzalez-Garcia, F. J. Arques-Orobon, L. E. Garcia Munoz, and D. Segovia-Varga, "Dual band high efifciency class CE power amplifier based on CRLH diplexer," Progress In Electromagnetics Research, Vol. 97, 217-240, 2009.
18. Cripps, S., RF Power Amplifiers for Wireless Communications,, Artech House, 1999.
19. Razavi, B., Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
doi:10.1109/22.899960
20. Ferrero, A., V. Teppati, and A. Carullo, "Accuracy evaluation of On-Wafer load-pull measurement," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 39-43, 2001.
doi:10.1109/TMTT.2005.854218
21. Choon, B. S., H. O. Beng, S. Y. Kiat, J.-G. Ma, and A. D. Manh, "Accurate and scalable RF interconnect model for silicon-based RFIC applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 3035-3044, 2005.
doi:10.1109/TVLSI.2005.857177
22. Shi, X.-M., J.-G. Ma, S. Y. Kiat, A. D. Manh, and E.-P. Li, "Equivalent circuit model of On-Wafer CMOS interconnects for RFICs," IEEE Transactions on Very Large Scale Integration (VLSI) System, Vol. 13, No. 9, 1060-1071, 2005.
doi:10.1163/156939310791285218
23. Sharma, R., T. Chakravarty, and A. B. Bhattacharyya, "Reduction of signal overshoots in high-speed interconnects using adjacent ground tracks," Journal of Electromagnetic Waves Applications, Vol. 24, No. 7, 941-950, 2010.
doi:10.2528/PIER09091707
24. Wu, B. and L. Tsang, "Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects," Progress In Electromagnetics Research, Vol. 97, 129-139, 2009.
25. Agilent, Technologies, "Amplifier parameters reference," 2007.,", 2007.
26. Agilent Technologies, P2D simulations, 2005.
27. Dunleavy, L. P. and L. Jiang, "Understanding P2D nonlinear models," Microwave Journals, 2007.
doi:10.1504/IJCNDS.2008.020712
28. Wong, S.-K., K. Fabian, M. Siti, and J.-H. See, "Ultra-wideband (UWB) CMOS power amplifier design and implementation," Int. Journals of Communication Networks and Distributed System (IJCNDS), Vol. 1, No. 3, 296-311, 2008.
29. Rivas-T, W., "Using S-parameter data effectively," Planet Analog Magazine, 2007.
doi:10.1017/CBO9780511805738
30. Niknejad, A. M., Electromagnetics for High-speed Analog and Digital Communication Circuits, Cambridge Univ. Press, 2007.
31. Sayre, C. W., "Complete Wireless Design," Mc-Graw Hill, 2008.