Vol. 113
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-28
Hybrid Tangential Equivalence Principle Algorithm with MLFMA for Analysis of Array Structures
By
Progress In Electromagnetics Research, Vol. 113, 127-141, 2011
Abstract
In this paper, a novel technique is proposed to solve the electromagnetic scattering by large finite arrays by combining the tangential equivalence principle algorithm (T-EPA) with multilevel fast multipole algorithm (MLFMA). The equivalence principle algorithm (EPA) is a kind of domain decomposition scheme for the electromagnetic scattering and radiation problems based on integral equation (IE). For the array with same elements, only one scattering matrix needs to be constructed and stored. T-EPA has better accuracy than the original EPA. But the calculating for the impedance matrix in T-EPA is still time consuming. MLFMA is proposed to speed up the matrix-vector multiplication in T-EPA. Numerical results are shown to demonstrate the accuracy and efficiency of the proposed technique.
Citation
Hanru Shao, Jun Hu, Zai-Ping Nie, Guo Han, and Shiquan He, "Hybrid Tangential Equivalence Principle Algorithm with MLFMA for Analysis of Array Structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011.
doi:10.2528/PIER10122212
References

1. Losada, V., R. R. Boix, and F. Medina, "Radar cross section of stacked circular microstrip patches on anisotropic and chiral substrates," IEEE Trans. Antenn. Propag., Vol. 51, No. 5, 1136-1139, May 2003.
doi:10.1109/TAP.2003.811528

2. Gustafsson, M., "RCS reduction of integrated antenna arrays with resistive sheets," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 27-40, 2006.
doi:10.1163/156939306775777323

3. Yeo, J. and D. Kim, "Novel tapered AMC structures for backscattered RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 697-709, 2009.
doi:10.1163/156939309788019804

4. Wang, W. T., S. X. Gong, X. Wang, H. W. Yuan, J. Ling, and T. T. Wan, "RCS reduction of array antenna by using bandstop FSS reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1505-1514, 1995.

5. Pozar, D. M. and D. H. Schaubert, "Analysis of an infinite array of rectangular micristrip patches with idealized feed," IEEE Trans. Antenn. Propag., Vol. 35, No. 10, 1101, Oct. 1984.

6. Liu, Z. F., P. S. Kooi, L. W. Li, M. S. Leong, and T. S. Yeo, "A method of moments analysis of a microtrip phased array in three layered structures," Progress In Electromagnetics Research, Vol. 31, 155-179, 2001.
doi:10.2528/PIER00062201

7. Mcgrath, D. T. and V. P. Pyati, "Phased array antenna analysis with the hybrid finite element method," IEEE Trans. Antennas Propag., Vol. 42, No. 12, 1625-1630, Dec. 1994.
doi:10.1109/8.362811

8. Hua, Y. and J. Li, "Analysis of longitudinal shunt waveguide slots using FEBI," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2041-2046, 2009.
doi:10.1163/156939309789932520

9. Ozgun, O. and M. Kuzuoglu, "Finite element analysis of electromagnetic scattering problems via iterative leap-field domain decomposition method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 251-266, 2008.
doi:10.1163/156939308784160668

10. Lee, S. C., M. N. Vouvakis, and J. F. Lee, "A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays ," J. Comput. Phys., Vol. 203, 1-21, Feb. 2005.

11. Holloway, C. L., P. M. McKenna, R. A. Dalke, R. A. Perala, and C. L. Devor, "Time-domain modeling, characterization, and measurements of anechoic and semi-anechoic electromagnetic test chambers," IEEE Trans. Electro. Compat., Vol. 44, No. 1, 102-118, Feb. 2002.
doi:10.1109/15.990716

12. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antenn. Propag., Vol. 45, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

13. Hu, J. and Z. P. Nie, "Multilevel fast multipole algorithm for solving scattering from 3-D electrically large object," Chinese Journal of Radio Science, Vol. 19, 509-514, May 2004.

14. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetics Research, Vol. 55, 47-78, 2005.
doi:10.2528/PIER05021001

15. Ouyang, J., J., F. Yang, S. W. Yang, and Z. P. Nie, "Exact simulation method VSWIE+MLFMA for analysis radiation pattern of pro-feed conformal microstrip antennas and the application of synthesis radiation pattern of conformal array mounted on finite-length PEC circular cylinder with des," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1995-2008, 2007.
doi:10.1163/156939307783152803

16. Hu, J., Z. P. Nie, L. Lei, and L. J. Tian, "Fast solution of scattering from conducting structures by local MLFMA based on improved electric field integral equation," IEEE Trans. Electromagn. Compat., Vol. 50, No. 4, Nov. 2008.

17. Ping, X. W., T. J. Cui, and W. B. Lu, "The combination of bcgstab with multifrontal algorithm to solve FEBI-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604

18. Peng, Z., X. Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of FE-BI-MLFMA using multilevel inverse-based ilu preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
doi:10.2528/PIER09060305

19. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in elemtromagnetic," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

20. Blesznski, E. and M. Bleszynski, "AIM: Adaptive integral method for solving large scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, 1225-1251, Sep. 1996.
doi:10.1029/96RS02504

21. Hu, L., L. W. Li, and T. S. Yeo, "Analysis of scattering by large inhomogeneous bi-anisotropic objects using AIM," Progress In Electromagnetics Research, Vol. 99, 21-36, 2009.
doi:10.2528/PIER09101204

22. Seo, S. M. and J.-F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Transactions on Magnetics, Vol. 41, No. 9, 1476-1479, Oct. 1997.

23. Yin, J. L., J. Hu, X. F. Que, and Z. P. Nie, "A fast IE-FFT solution of 3D coating scatterers," Micro. Opt. Tech. Lett., Vol. 52, No. 1, 241-244, Jan. 2010.
doi:10.1002/mop.24846

24. Li, M. K. and W. C. Chew, "A domain decomposition scheme based on equivalence theorem," Micro. Opt. Tech. Lett., Vol. 48, No. 9, 1853-1857, Sep. 2006.
doi:10.1002/mop.21777

25. Li, M. K. and W. C. Chew, "Using tap basis to implement the equivalence principle algorithm for domain decomposition in integral equations," Micro. Opt. Tech. Lett., Vol. 48, No. 11, 2218-2222, Nov. 2006.
doi:10.1002/mop.21933

26. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antenn. Propag., Vol. 55, No. 1, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

27. Li, M. K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antenn. Propag., Vol. 56, No. 8, 2389-2397, Aug. 2008.
doi:10.1109/TAP.2008.926785

28. Xiao, G. B., J. F. Mao, and B. Yuan, "Generalized transition matrix for arbitrarily shaped scatterers or scatterer groups," IEEE Trans. Antenn. Propag., Vol. 56, No. 12, 3723-3732, Dec. 2008.
doi:10.1109/TAP.2008.2007283

29. Yla-Oijala, P. and M. Taskinen, "Electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, No. 1, Feb. 2009.
doi:10.1080/17455030802585365

30. Yla-Oijala, P. and M. Taskinen, "Solving electromagnetic scattering by multiple targets with surface equivalence principle algorithm," 3rd European Conference on Antenna and Propagation, 88-92, Mar. 2009.

31. Yla-Oijala, P., O. Ergul, L. Gurel, and M. Taskinen, "Efficient surface integral equation methods for the analysis of complex metamaterial structures ," 3rd European Conference on Antenna and Propagation, 1560-1564, Mar. 2009.

32. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antenn. Propag., Vol. 45, No. 3, 329-342, Mar. 1997.
doi:10.1109/8.558649

33. Hu, J., Z. P. Nie, and L. Lin, "Solving 3-D electromagnetic scattering from conducting object by MLFMA with curvilinear RWG basis ," IEEE Antennas and Propagation Society Int. Symp., 460-463, 2003.

34. Lu, C. C. and W. C. Chew, "A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets," IEEE Trans. Antenn. Propag., Vol. 48, No. 12, 1866-1868, Dec. 2000.
doi:10.1109/8.901277

35. Yuan, N., T. S. Yeo, X. C. Nie, and L. W. Li, "RCS computation of composite conductiong-dielectric objects with junctions using the hybrid volume-surface integral equation," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 1, 19-36, 2005.
doi:10.1163/1569393052955107

36. Velamparambil, S., W. C. Chew, and J. M. Song, "10 Million unknowns: Is it that big?," IEEE Trans. Antenn. Propag., Vol. 45, No. 2, 43-58, Apr. 1997.