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Abstract—In this paper, a novel technique is proposed to solve the
electromagnetic scattering by large finite arrays by combining the
tangential equivalence principle algorithm (T-EPA) with multilevel
fast multipole algorithm (MLFMA). The equivalence principle
algorithm (EPA) is a kind of domain decomposition scheme for the
electromagnetic scattering and radiation problems based on integral
equation (IE). For the array with same elements, only one scattering
matrix needs to be constructed and stored. T-EPA has better accuracy
than the original EPA. But the calculation for the impedance matrix in
T-EPA is still time consuming. MLFMA is proposed to speed up the
matrix-vector multiplication in T-EPA. Numerical results are shown
to demonstrate the accuracy and efficiency of the proposed technique.

1. INTRODUCTION

In recent years, research on the radar cross section (RCS) of array
antennas has received much attention because the scattering from
the array mounted on a low-observable platform may give significant
contribution to the overall RCS [1–4]. To accurately model the
currents on the array element and the mutual coupling among the
elements, a three dimensional (3D) full-wave analysis is necessary.
Plenty of numerical techniques have been proposed to address the
problems of large arrays such as the method of moments (MoM) [5, 6],
finite element method (FEM) [7–10] and finite-difference time-domain
method (FDTD) [11]. As a popular integral equation method
(IEM), the MoM has been widely used for numerical analysis of
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electromagnetic problems. By comparison with experiment results for
various antenna configurations, the high accuracy of the MoM has been
verified. However, the memory requirement and CPU time in MoM are
O(N2) for iterative solvers, where N denotes the number of unknowns.
In last decades, many fast algorithms, such as multilevel fast multipole
algorithm (MLFMA) [12–19], adaptive integral method (AIM) [20, 21],
integral equation fast fourier transform (IE-FFT) [22, 23], have been
proposed to improve the numerical efficiency of the IE significantly.
But these fast methods are not most suitable for problems of finite
arrays.

The equivalence principle algorithm (EPA), based on the domain
decomposition method (DDM) and surface equivalence principle, has
been developed to solve multi-scale problems and array structures with
same elements [24–27]. This algorithm utilizes virtual equivalence
surfaces to enclose objects and transfers original unknowns of the
objects onto the new unknowns of the equivalence surfaces. The surface
integral equation is used on virtual equivalence surfaces. If the objects
consist of complex perfect electric conductor (PEC) structures or high
permittivity dielectrics, the unknowns of the equivalence surfaces will
be much less than the unknowns on the objects. Therefore, the EPA
can reduce the number of unknowns significantly. For array with the
same elements, only one scattering matrix needs to be solved and
stored, which can reduce the memory requirement significantly. The
other benefit of EPA method is that it can improve the conditioning
of the impedance matrix. A similar DDM method named generalized
transition matrix is discussed in [28].

In this paper, the EPA is applied to solve the electromagnetic
scattering of periodic array and non-periodic array. But when the
equivalence surfaces are close to the objects, the original EPA leads
to a loss of accuracy. To improve the accuracy of the traditional
EPA, tangential EPA (T-EPA) has been developed [29–31]. To further
reduce the memory requirement and CPU time, MLFMA is applied in
T-EPA to speed up the computations of interactions among equivalence
surfaces. Numerical results are shown to demonstrate the accuracy
and efficiency of the T-EPA hybrid with MLFMA for solving the array
structures.

2. EQUIVALENCE PRINCIPLE ALGORITHM

The electromagnetic scattering of a number of disjoint objects Pl,
(l = 1, . . . , N) in free space is investigated, where N is the number
of objects. In EPA, those objects are divided into groups. Each group
is enclosed by an virtual equivalence surface ESl, (l = 1, . . . , K), where
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K is the number of equivalence surfaces. All of the equivalence surfaces
are disjoint. The EPA method is mainly based on two procedures:
the scattering of objects via an equivalence surface and the interaction
among the equivalence surfaces. The first procedure is described by the
scattering operators Sll, (l=1,. . . ,K), which contain the information of
the inside objects. The scattering operators Sll are defined to compute
the scattering currents on the equivalence surfaces. For the PEC
objects, the Sll can be written as [24]

Sll =
[

n̂×Klp

η0Llp × n̂

]
· [ η0Lpp ]−1 · [ η0Lpl −Kpl ] (1)

Here, the subscript l and p represent the equivalence surface and the
PEC object inside the equivalence surface respectively. The L and K
are the surface integral operators defined as
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Here, X is J or M, G0 is the Green’s function in free space. η0 is
the wave impedance in free space. Using the scattering operators Sll,
the unknowns of the objects are transferred onto the unknowns of
the equivalence surfaces. Then the new unknowns are the equivalence
electric and magnetic currents Js

l = n̂l ×Hs
l and Ms

l = −n̂l × Es
l on

ESl, (l = 1, . . . , K), where n̂l denotes the unit outer normal vector on
the ESl. The Es

l and Hs
l denote the electric and magnetic fields on the

ESl respectively. The interactions between two equivalence surfaces
ESl and ESk, (k 6= l) are described by the translation operators
Tlk, (k 6= l) as [24]

Tlk =
[

n̂×Klk
1
η0

n̂× Llk

−η0 × Llk n̂×Klk

]
(4)

Figure 1 shows an example of the interaction between two PEC objects
using EPA method.

Finally, the discretized form of EPA equation on equivalence
surfaces can be represented as:
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Figure 1. The interaction between two PEC objects using EPA
method.

where I is the identity operator,

Vi/s
l =

[
Ji/s

l

Mi/s
l

]
(6)

are the incident or scattering equivalence currents on the ESl, (l =
1, . . . , K). After solving the equivalence surface currents Js

l and Ms
l ,

the scattering fields can be derived outside the equivalence surfaces.

3. TANGENTIAL EQUIVALENCE PRINCIPLE
ALGORITHM

In traditional EPA, the equivalence surface currents J and M are
the rotated tangential projections of the fields onto the surface.
Equation (7) is used to solve the J and M.

[
I 0
0 I

]
·
[

J
M

]
=

[
n̂×H
−n̂×E

]
(7)

Here, E and H denote the known fields. Curvilinear Rao-Wilton-
Glisson (CRWG) basis functions [32, 33] are used to expand the
currents J and M. The equation is tested with Galerkin’s scheme.
Numerical experiments show that the computed fields lead to a lose of
accuracy if the equivalence surfaces close to the inside objects. T-EPA
has been proposed to improve the accuracy of the original EPA. The
idea is to utilize tangential integrodifferential operators in projecting
the fields onto the surface currents. The J and M are represented in
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terms of basis functions. The T-EPA equation can be written as [29][
η0L −K
K 1

η0
L

]
·
[

J
M

]
=

[
E
H

]
(8)

To do this, the scattering operator Sll and translation operator Tlk

have to be modified as

St
ll =

[
η0Llp

Klp

]
· [ η0Lpp ]−1 · [ η0Lpl −Kpl ] (9)

and
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[
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Klk
1
η0

Llk

]
(10)

where the superscript t denotes tangential projections. Another
method using high-order field point sampling scheme is applied to
improve the accuracy of the original EPA [27].

4. ACCELERATIONS OF T-EPA USING MLFMA

In [30, 31], T-EPA has been used to analysis of array dielectric spheres
and metamaterial structures. Although T-EPA can reduce the final
number of unknowns, it is still very time consuming for large arrays.
As well known, MLFMA is used to accelerate the matrix-vector
multiplication with the complexity of O(N log N). In this paper,
MLFMA [13] is applied in the T-EPA to accelerate the translation
procedure in which all the equivalence surface currents interact with
each other. Equation (5) is rewritten as[

Js

Ms

]
− [ S ] · [ T ] ·

[
Js

Ms

]
= [ S ] ·

[
Ji

Mi

]
(11)

Because the equivalence surface currents do not radiate to the self
equivalence surface, the self interaction of each equivalence surface
must be excluded. Then the translation matrix T has zeros on the
diagonal blocks. But MLFMA is usually used to compute a fully dense
matrix-vector multiplication. In this letter, the self interaction of each
equivalence surface is subtracted after matrix-vector multiplication.

For L operators in the translation matrix T, the radiation and
receiving patterns have the same form as

VE
smi

(
k̂
)

=
∫

S

[
I− k̂k̂

]
· eik·(rm−ri) · fi(rm − ri)ds (12)

where rm is the center position of group m, ri is the location of the
sampling point. The radiation patterns of K operators are

VM
smi

(
k̂
)

=
∫

S
k̂ × eik·(rm−ri) · fi(rm − ri)ds (13)
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The receiving pattern of K operators are the same as L operators. The
symmetry in radiation and receiving patterns is also applied to further
reduce the total memory requirement [36].

It is necessary to point out that there are some limitations of
the present EPA method: (1) The distance between the equivalence
surface and the object should be chosen carefully. The distance should
be larger than one tenth of wavelength in order to maintain a good
precision, and not be too far in order to reduce the number of unknowns
on the equivalence surface. (2) For calculating the scattering matrix
S in the EPA, the inversion of impedance matrix of the inside object
is required. This procedure is very time-consuming if the dimension
of impedance matrix is very large (like 100000 × 100000). So one
equivalence surface should not enclose many array elements. In this
paper, each equivalence surface encloses only one element.

5. NUMERICAL RESULTS

In this section, several numerical results are given to demonstrate the
accuracy and efficiency of the proposed method. Firstly, two PEC
spheres are computed in free space to analysis the accuracy of the EPA
and T-EPA methods. Two spheres are identical with a radius of 0.4 m.
The distance between the centers of two spheres is 2 m. Each sphere is
enclosed by a cube with a length of 1 m. The excitation is x̂ polarized
plane wave propagating into the negative ẑ direction at 0.3GHz. The
bistatic RCS for the HH polarization is shown in Figure 2. The root

ik

i
E

x

Y

Z

Figure 2. The bistatic RCS of two PEC spheres, HH polarization at
0.3GHz.
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mean square (RMS) error of EPA is 0.1697 dBsm, while the RMS error
of T-EPA is 0.0543 dBsm. It is clear that T-EPA is more accurate than
EPA.

Secondly, the scattering of 5×5 U-shaped slot micro-strip periodic
array antennas is considered. The dimension of the antenna element
is shown in Figure 3(a). The PEC strip is coloured with yellow,
while the dielectric substrate is coloured with blue. The substrate’s
thickness is 1.5 cm with εr = 2.2 and µr = 1.0. The dimension of
5 × 5 array is shown in Figure 3(b). Each element is enclosed by
an equivalence surface with the same size of 29 cm × 21 cm × 7.5 cm.
The volume-surface integral equation (VSIE) [34, 35] is used to solve
the scattering currents of the elements. Due to the symmetry of the
array, only one S matrix needs to be calculated and stored. Therefore,
the memory requirement of the array can be reduced. The excitation
is x̂ polarized plane wave propagating into the negative ẑ direction
at 2.0GHz. The bistatic RCS for the HH polarization is shown in
Figure 4. A good agreement with the result obtained by traditional
VSIE-MLFMA is achieved. Figure 5(a) shows comparison of the
number of generalized minimal residual (GMRES) iterations for the
5 × 5 U-shaped slot micro-strip periodic array antennas between T-
EPA with MLFMA and VSIE-MLFMA. It can be seen that the T-EPA
hybrid with MLFMA converges to 0.001 with only 15 steps, while the
traditional VSIE-MLFMA without preconditioning needs 264 steps. It
means that the proposed method can improve the conditioning of the
matrix efficiently. The total number of unknowns of the array elements
is 3476 × 25. It is almost the same as the number of unknowns of
equivalence surfaces, which is 3552× 25. The number of unknowns is
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Figure 3. (a) The geometry of a U-shaped slot micro-strip antenna
element. (b) The geometry of 5× 5 U-shaped slot micro-strip antenna
array.
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Figure 4. The bistatic RCS of 5×5 U-shaped slot antenna array, HH
polarization at 2.0GHz. Its relative permittivity is εr = 2.2, relative
permeability is µr = 1.0.

(a) (b)

Figure 5. The number of GMRES iterations for the 5× 5 U-shaped
slot micro-strip periodic array antennas. (a) Each element with relative
permittivity εr = 2.2, relative permeability µr = 1.0. (b) Each element
with relative permittivity εr = 4.0, relative permeability µr = 1.0.
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not reduced in T-EPA method. However, for the element with higher
permittivity, the reduction will be significantly. The next example is
used to demonstrated that.

In the third example, the element with εr = 4.0 and µr = 1.0
is investigated. The array still consist of 5 × 5 elements. The other
parameters are the same as the second example. The iteration number
of GMRES for the array is given in Figure 5(b). For the element with
high permittivity, the VSIE-MLFMA needs 1125 steps to converge to
0.01. The T-EPA with MLFMA converges to 0.01 and 0.001 needs 13
steps and 19 steps respectively, which is a bit more than the number
of iterations in the second example. The evaluated results of bistatic
RCS are plotted in Figure 6. The number of unknowns of equivalence
surfaces is still 3552 × 25, while the total number of unknowns of
array elements is changed to 6705 × 25. The reduction of number
of unknowns is 47%. It is obvious that the T-EPA method can reduce
the number of unknowns for the objects with high permittivity. The
total memory requirement and CPU time for the T-EPA is 605.4MB
and 25679.4 s respectively. In contrast, for traditional MLFMA, the
memory requirement is 3204.3 MB, and the CPU time is 46945.0 s.

Fourthly, a non-periodic array is investigated, which is shown in
Figure 7. The element is the same as the one in second example,
while the distance between two elements is different. The array is
illuminated by a plane wave with incidence angle of θi = 0◦, φi = 0◦

Figure 6. The bistatic RCS of 5×5 U-shaped slot antenna array, HH
polarization at 2.0GHz. Its relative permittivity is εr = 4.0, relative
permeability is µr = 1.0.
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Figure 7. The geometry of non-periodic array with 15 elements. Its
relative permittivity is εr = 4.0, relative permeability is µr = 1.0.

Figure 8. The bistatic RCS of non-periodic array with 15 elements,
HH polarization at 2.0 GHz. Its relative permittivity is εr = 4.0,
relative permeability is µr = 1.0.

at 2.0 GHz. The results of bistatic RCS for the HH polarization are
shown in Figure 8. The results show the well agreement between two
methods.

Above four examples have already demonstrated the accuracy and
efficiency of the T-EPA hybrid with MLFMA algorithm, next step is to
investigate its capability. Finally, to demonstrate the capability of the
proposed method for solving large array problems, a periodic array
with 40 × 40 elements are considered. The parameters of the array
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Figure 9. The bistatic RCS of 40× 40 U-shaped slot antenna array,
HH polarization at 2.0 GHz. Its relative permittivity is εr = 4.0,
relative permeability is µr = 1.0.

element is the same as the one in third example, except the number of
elements. The total number of unknowns of array elements is 10.728
million (6705×1600). Due to our limited memory, this array can not be
solved by traditional VSIE-MLFMA, which needs about 200 GB total
memory. By using the T-EPA with MLFMA method, the number of
unknowns on the equivalence surfaces is only 5.68 million (3552×1600).
The simulation uses 9-levels MLFMA and 26.6 GB total memory. The
error converges to 0.001 after 118 iterations. The results of bistatic
RCS for the HH polarization are shown in Figure 9. The significant
reduction in the memory requirement is mainly based on the following
facts: (1) The number of unknowns of the equivalence surfaces is only
half of the number of unknowns of the elements. (2) The meshes
on the elements are much finer than the meshes on the equivalence
surfaces due to the high permittivity. Then finest boxes contain more
basis functions in MLFMA. It needs more memory requirement for the
computation of nearby regions, which is implemented by MoM. (3) In
the T-EPA with MLFMA, the symmetry in radiation and receiving
patterns is used as in the surface integral equation case. However, the
symmetry does not exist in the VSIE-MLFMA. All of the patterns
need to be stored.
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6. CONCLUSION

In this paper, the T-EPA combined with MLFMA is used to solve the
scattering problems of periodic array and non-periodic array. In this
method, each array element is enclosed by a virtual equivalence surface.
Each equivalence surface is described by a associated scattering matrix.
For the array with the same elements, only one scattering matrix needs
to be calculated and stored. By transferring the unknowns of the
objects onto the equivalence surfaces, the total number of unknowns
can be reduced. The conditioning of the impedance matrix also can
be improved. To improve the accuracy of the original EPA, T-EPA
is applied. The interaction among equivalence surfaces in T-EPA is
further speeded up by MLFMA. The accuracy and efficiency of T-EPA
with MLFMA are verified by several results. Especially, the array with
10 million unknowns is solved by this method successfully. As a fast
solver for array structures, the present method can realize efficient
solution of scattering from periodic array and non-periodic array with
complex elements.
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