Vol. 113
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-01
Calculation and Optimization of Electromagnetic Resonances and Local Intensity Enhancements for Plasmon Metamaterials with Sub-Wavelength Double-Slots
By
Progress In Electromagnetics Research, Vol. 113, 161-177, 2011
Abstract
We propose two metamaterials with sub-wavelength double-slots --- single-side double-slot metamaterial and double-side double-slot metamaterial. The dependence of the electromagnetic resonances and local intensity enhancements on the structural parameters is studied by the finite-difference time-domain technique and the finite element method. Results show that the central-arm of a double-slot structure strongly influences frequency and local intensities at both high- and low-frequency resonances. Very strong field localization can be achieved at the high-frequency resonance and its particular distribution can be well controlled by the width of the central-arm. A double-side double-slot structure can be utilized to separately enhance the high-frequency resonance, while suppressing the low-frequency resonance. The simulation results are discussed in terms of plasmon resonances.
Citation
Lin Han, Shuqi Chen, Axel Schulzgen, Yong Zeng, Feng Song, Jian-Guo Tian, and Nasser Peyghambarian, "Calculation and Optimization of Electromagnetic Resonances and Local Intensity Enhancements for Plasmon Metamaterials with Sub-Wavelength Double-Slots," Progress In Electromagnetics Research, Vol. 113, 161-177, 2011.
doi:10.2528/PIER10120604
References

1. Joannopoulos, J. D., Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.

2. Shalaev, V. M., W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., Vol. 30, 3356-3358, 2005.
doi:10.1364/OL.30.003356

3. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett., Vol. 30, 3198-3200, 2005.
doi:10.1364/OL.30.003198

4. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404

5. Sabah, C., "Tunable metamaterial design composed of triangular split ring resonator and wire strip for S- and C- microwave bands," Progress In Electromagnetics Research B, Vol. 22, 341-357, 2010.
doi:10.2528/PIERB10051705

6. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, 2943-2945, 2004.
doi:10.1063/1.1695439

7. Katsarakis, N., G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Opt. Lett., Vol. 30, 1348-1350, 2005.
doi:10.1364/OL.30.001348

8. Linden, S., C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science, Vol. 306, 1351-1353, 2004.
doi:10.1126/science.1105371

9. Marqués, R., F. Martín, and M. Sorolla, Metamaterials with Negative Parameters, Wiley, New York, 2008.

10. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University, New York, 2009.

11. Zeng, Y., C. Dineen, and J. V. Moloney, "Magnetic dipole moments in single and coupled split-ring resonators," Phys. Rev. B, Vol. 81, 075116, 2010.
doi:10.1103/PhysRevB.81.075116

12. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, 1513-1515, 2009.
doi:10.1126/science.1177031

13. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photonics, Vol. 3, 157-162, 2009.
doi:10.1038/nphoton.2009.4

14. Sersic, I., M. Frimmer, E. Verhagen, and A. F. Koenderink, "Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays," Phys. Rev. Lett., Vol. 103, 213902, 2009.
doi:10.1103/PhysRevLett.103.213902

15. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.
doi:10.1126/science.1096796

16. Houck, A. A., J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett., Vol. 90, 137401, 2003.
doi:10.1103/PhysRevLett.90.137401

17. Seddon, N. and T. Bearpark, "Observation of the inverse Doppler effect," Science, Vol. 302, 1537-1540, 2003.
doi:10.1126/science.1089342

18. Lu, J., T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. I. Wu, J. A. Kong, and M. Chen, "Cerenkov radiation in materials with negative permittivity and permeability," Opt. Express, Vol. 11, 723-734, 2003.
doi:10.1364/OE.11.000723

19. Duan, Z.-Y., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604

20. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

21. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

22. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

23. Navarro-Cia, M., J. M. Carrasco, M. Beruete, and F. J. Falcone, "Ultra-wideband metamaterial filter based on electroinductive-wave coupling between microstrips," Progress In Electromagnetics Research Letters, Vol. 12, 141-150, 2009.
doi:10.2528/PIERL09102106

24. NaghshvarianJahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2371-2382, 2010.
doi:10.1163/156939310793675808

25. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics Nanostruct. Fundam. Appl., Vol. 6, 87-95, 2008.
doi:10.1016/j.photonics.2007.07.013

26. Kwon, D.-H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys., Vol. 10, 115023, 2008.
doi:10.1088/1367-2630/10/11/115023

27. Zharov, A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Phys. Rev. Lett., Vol. 91, 037401, 2003.
doi:10.1103/PhysRevLett.91.037401

28. Liu, Y., G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett., Vol. 99, 153901, 2007.
doi:10.1103/PhysRevLett.99.153901

29. Chen, S., L. Han, A. Schülzgen, H. Li, L. Li, J. V. Moloney, and N. Peyghambarian, "Local electric field enhancement and polarization effects in a surface-enhanced raman scattering fiber sensor with chessboard nanostructure," Opt. Express, Vol. 16, 13016-13023, 2008.
doi:10.1364/OE.16.013016

30. Zeng, Y., Q. Wu, and D. H. Werner, "Electrostatic theory for designing lossless negative permittivity metamaterials," Opt. Lett., Vol. 35, 1431-1433, 2010.
doi:10.1364/OL.35.001431

31. Klein, M. W., C. Enkrich, M. Wegener, and S. Linden, "Second-harmonic generation from magnetic metamaterials," Science, Vol. 313, 502-504, 2006.
doi:10.1126/science.1129198

32. Taflove, A. and S. C. Hagness, Computational Electrodynamics --- The Finite-difference Time-domain Method, Artech House, Boston, 2005.

33. Palik, E. D., Handbook of Optical Constants of Solids, Academic, New York, 1985.

34. Ditlbacher, H., A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett., Vol. 95, 257403, 2005.
doi:10.1103/PhysRevLett.95.257403

35. Rockstuhl, C., F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express, Vol. 14, 8827-8836, 2006.
doi:10.1364/OE.14.008827

36. Rockstuhl, C., T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, "Resonances of split-ring resonator metamaterials in the near infrared," Appl. Phys. B, Vol. 84, 219-227, 2006.
doi:10.1007/s00340-006-2205-2

37. Szabó, Z., G.-H. Park, R. Hedge, and E.-P. Li, "A unique extraction of metamaterial parameters based on kramers-kronig relationship," IEEE T. Microw. Theory, Vol. 58, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310