Vol. 113
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-28
Synthesis of Multi-Step Coplanar Waveguide-to-Microstrip Transition
By
Progress In Electromagnetics Research, Vol. 113, 111-126, 2011
Abstract
A synthesis procedure is developed in this paper for the design of N-step coplanar waveguide-to-microstrip transitions. An equivalent circuit approach is adopted to model the structure in terms of N cascaded ABCD matrices relative to the N coplanar waveguide sections forming the transition. A constrained optimization problem is formulated as the minimum finding of a proper functional to accurately determine the transition dimensions by imposing an upper bound to the return loss within a prescribed frequency band. An iterative N-step procedure is developed to find the optimization problem solution. Numerical results on millimeter-wave transition configurations are provided to demonstrate the effectiveness of the proposed synthesis method. A back-to-back transition prototype with N=3 sections is then fabricated and characterized in terms of measured S-parameters to experimentally demonstrate a return loss better than 10 dB in the frequency range from 1 GHz up to 40 GHz.
Citation
Sandra Costanzo, "Synthesis of Multi-Step Coplanar Waveguide-to-Microstrip Transition," Progress In Electromagnetics Research, Vol. 113, 111-126, 2011.
doi:10.2528/PIER10112908
References

1. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Wiley-Interscience, New York, 2001.
doi:10.1002/0471224758

2. Zhang, G. M., J. S. Hong, B. Z. Wang, Q. Y. Qin, J. B. Mo, and D.-M. Wan, "A novel multi-folded UWB antenna FED by CPW," Journal Electromagnetice Waves Applications, Vol. 21, No. 14, 2109-2119, 2007.
doi:10.1163/156939307783152911

3. Chen, N.-W. and Y.-C. Liang, "An ultra-broadband, coplanar-waveguide FED circular monopole antenna with improved radiation characteristics," Progress In Electromagnetics Research C, Vol. 9, 193-207, 2009.
doi:10.2528/PIERC09071610

4. Dastranj, A. and M. Biguesh, "Broadband coplanar waveguide-FED wide-slot antenna," Progress In Electromagnetics Research C, Vol. 15, 89-101, 2010.
doi:10.2528/PIERC10041706

5. Simons, R. N. and R. Q. Lee, "Coplanar-waveguide/Microstrip probe coupler and applications to antennas," IEE Electronics Letters, Vol. 26, 1998-2000, 1990.
doi:10.1049/el:19901292

6. Mirshekar-Syahkal, D., D. J. Newson, D.Wake, and I. D. Henning, "Wide-band transitions for applications in MMIC's and OEIC's," IEEE Microwave Guided Wave Lett., Vol. 4, 299-300, 1994.
doi:10.1109/75.311513

7. Dib, N. I. R., N. Simons, and L. P. B. Katehi, "New uniplanar transitions for circuit and antenna applications," IEEE Trans. Microwave Theory Tech., Vol. 43, 2868-2873, 1995.
doi:10.1109/22.475648

8. Gauthier, G. P., L. P. Katehi, and G. M. Rebeiz, "W-band finite ground coplanar waveguide (FGCPW) to microstrip line transition," 1998 IEEE MTT-S Int. Microwave Symp. Digest, 107-109, 1998.

9. Ellis, T. J., J.-P. Raskin, L. P. Katehi, and G. M. Rebeiz, "A wideband CPW-to-microstrip transition for millimeter-wave packaging," 1999 IEEE MTT-S Int. Microwave Symp. Digest, 629-632, 1999.

10. Raskin, J.-P., G. Gauthier, L. P. Katehi, and G. M. Rebeiz, "Mode conversion at GCPW-to-microstrip-line transitions," IEEE Trans. Microwave Theory Tech., Vol. 48, 158-161, 2000.
doi:10.1109/22.817486

11. Safwat, A. M. E., K. A. Zaki, W. Johnson, and C. H. Lee, "Novel design for coplanar waveguide to microstrip transition," 2001 IEEE MTT-S Int. Microwave Symp. Digest, 607-610, 2001.

12. Safwat, A. M. E., K. A. Zaki, W. Johnson, and C. H. Lee, "Novel transition between different configurations of planar transmission lines," IEEE Microwave Wireless Comp. Lett., Vol. 12, 128-130, 2002.
doi:10.1109/7260.993290

13. Riaziat, M., I. J. Feng, R. Majidi-Ahy, and B. A. Auld, "Single-mode operation of coplanar waveguides," IEE Electronics Letters, Vol. 23, 1281-1283, 1987.
doi:10.1049/el:19870888

14. Safwat, A. M. E., K. A. Zaki, W. Johnson, and C. H. Lee, "Mode-matching analysis of conductor backed coplanar waveguide with surface etching," Journal of Electromagnetics Waves and Applications, Vol. 15, No. 5, 627-641, 2001.
doi:10.1163/156939301X00300

15. Riaziat, M., R. Majidi-Ahy, and I.-J. Feng, "Propagation modes and dispersion characteristics of coplanar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 38, 245-251, 1990.
doi:10.1109/22.45333

16. Heinrich, W., F. Schnieder, and T. Tischler, "Dispersion and radiation characteristics of conductor-backed CPW with finite ground width," 2000 IEEE MTT-S Int. Microwave Symp. Digest, 1663-1666, 2000.

17. Pozar, D. M., Microwave Engineering, John Wiley and Sons, New York, 2005.

18. Fano, R. M., "Theoretical limitations of the broadband matching of arbitrary impedances," J. Franklin Institute, Vol. 429, 57-85, 139-154, 1950.
doi:10.1016/0016-0032(50)90006-8

19. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.

20. Wang, S.-N. and N.-W Chen, "Compact, ultra-broadband coplanar-waveguide bandpass filter with excellent stopband rejection," Progress In Electromagnetics Research B, Vol. 17, 15-28, 2009.
doi:10.2528/PIERB09071008

21. Vinoy, K. J. and P. U. Reddy, "Design of narrowband bandpass filter on coplanar waveguide using spiral slots," Progress In Electromagnetics Research Letters, Vol. 6, 139-148, 2009.
doi:10.2528/PIERL08122703

22. Chen, J., G. Fu, G.-D. Wu, and S.-X. Gong, "Compact graded central feeder line CPW-fed broadband antenna," Journal of Electromagnetics Waves and Applications, Vol. 23, No. 14-15, 2089-2097, 2009.
doi:10.1163/156939309789932467

23. Chen, H., Y. H. Wu, Y. M. Yang, and Y. X. Zhang, "A novel and compact bandstop filter with folded microstrip/CPW hybrid structure," Journal of Electromagnetics Waves and Applications, Vol. 24, No. 1, 103-112, 2010.
doi:10.1163/156939310790322163

24. Sze, J.-Y., T.-H. Hu, and T.-J. Chen, "Compact dual-band annular-ring slot antenna with meandered grounded strip," Progress In Electromagnetics Research, Vol. 95, 299-308, 2009.
doi:10.2528/PIER09072404

25. Alkanhal, M. A. S., "Composite compact triple-band microstrip antennas," Progress In Electromagnetics Research, Vol. 93, 221-236, 2009.
doi:10.2528/PIER09050407

26. Liao, W.-J., S.-H. Chang, and L.-K. Li, "A compact planar multiband antenna for integrated mobile devices," Progress In Electromagnetics Research, Vol. 109, 1-16, 2010.
doi:10.2528/PIER10083001

27. Sze, J.-Y. and Y.-F. Wu, "A compact planar hexa-band internal antenna for mobile phone," Progress In Electromagnetics Research, Vol. 107, 413-425, 2010.
doi:10.2528/PIER10020603

28. Malekabadi, S. A., A. R. Attari, and M. M. Mirsalehi, "Design of compact broadband microstrip antennas using coplanar coupled resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1755-1762, 2009.
doi:10.1163/156939309789566888

29. Jaw, J.-L., F.-S. Chen, and D.-F. Chen, "Compact dualband CPW-fed slotted patch antenna for 2.4/5 GHz Wlan operation," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1947-1955, 2009.
doi:10.1163/156939309789932584

30. Powell, M. J. D., "A fast algorithm for nonlinearly constrained optimization calculations," Lecture Notes in Mathematics, Vol. 630, 144-157, 1978.
doi:10.1007/BFb0067703