Vol. 111
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-24
Design of Subwavelength Tunable and Steerable Fabry-Perot/Leaky Wave Antennas
By
Progress In Electromagnetics Research, Vol. 111, 467-481, 2011
Abstract
The design of a thin tunable and steerable Fabry-Perot antenna is presented. The subwavelength structure is analyzed both by an efficient transmission line model and by full-wave simulations. The tunable antenna consists of a low profile resonant cavity made up of a Partially Reflecting Surface (PRS) placed in close proximity of a tunable high-impedance surface. The active ground plane is synthesized by loading the high-impedance surface with varactor diodes. Such design allows both tuning the high-gain operational frequency and obtaining a beam steering/shaping for each resonant frequency. The transmission line model here presented includes averaged analytical expressions for modelling the tunable high-impedance surface and the frequency selective surfaces. All the theoretical speculations are verified by full-wave simulations on a finite size structure.
Citation
Filippo Costa, and Agostino Monorchio, "Design of Subwavelength Tunable and Steerable Fabry-Perot/Leaky Wave Antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702
References

1. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propagation, Vol. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455

2. Lovat, G., P. Burghignoli, and D. R. Jackson, "Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 54, 1442-1452, May 2006.
doi:10.1109/TAP.2006.874350

3. Neto, A. and N. Llombart, "Wideband localization of the dominant leaky wave poles in dielectric covered antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 549-551, Dec. 2006.
doi:10.1109/LAWP.2006.889558

4. Swillam, M. A., R. H. Gohary, M. H. Bakr, and X. Li, "Efficient approach for sensitivity analysis of lossy and leaky structures using FDTD," Progress In Electromagnetics Research, Vol. 94, 197-212, 2009.
doi:10.2528/PIER09061708

5. Kim, D. and J.-I. Choi, "Analysis of a high-gain Fabry-Perot cavity antenna with an FSS superstrate: Effective medium approach," Progress In Electromagnetics Research Letters, Vol. 7, 59-68, 2009.
doi:10.2528/PIERL09011801

6. Sternberg, N. and A. I. Smolyakov, "Resonant transparency of a three-layer structure containing the dense plasma region," Progress In Electromagnetics Research, Vol. 99, 37-52, 2009.
doi:10.2528/PIER09091708

7. Jackson, D. R. and A. A. Oliner, "A leaky-wave analysis of the high gain printed antenna configuration," IEEE Trans. Antennas Propagation, Vol. 36, No. 7, 905-910, 1988.
doi:10.1109/8.7194

8. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528

9. Yousefi, L., H. Attia, and O. M. Ramahi, "Broadband experimental characterization of artificial magnetic materials based on a microstrip line method," Progress In Electromagnetics Research, Vol. 90, 1-13, 2009.
doi:10.2528/PIER08121904

10. Zhou, L., H. Li, Y. Qin, Z. Wei, and C. T. Chan, "Directive emissions from subwavelength metamaterial-based cavities," Applied Physics Letters, Vol. 86, 101101, Feb. 2005.
doi:10.1063/1.1881797

11. Kelly, J. R., T. Kokkinos, and A. P. Feresidis, "Analysis and design of sub-wavelength resonant cavity type 2-D leaky-wave antennas," IEEE Trans. Antennas Propagation, Vol. 56, No. 9, 2817-2825, 2008.
doi:10.1109/TAP.2008.928791

12. Zhao, J., Y. C. Jiao, F. Zhang, and X. Yang, "High gain circularly polarized antenna using sub-wavelength resonant cavity," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 33-40, 2010.
doi:10.1163/156939310790322109

13. Costa, F., A. Monorchio, S. Talarico, and F. M. Valeri, "An active high impedance surface for low profile tunable and steerable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 676-680, 2008.
doi:10.1109/LAWP.2008.2006070

14. Luukkonen, O., C. R. Simovski, A. V. Räisänen, and S. A. Tretyakov, "An efficient and simple analytical model for analysis of propagation properties in impedance waveguides," IEEE Trans. on Microwave Theory and Techniques, Vol. 56, No. 7, 1624-1632, 2008.
doi:10.1109/TMTT.2008.925236

15. Weily, A. R., T. S. Bird, and Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 11, 3382-3390, Nov. 2008.
doi:10.1109/TAP.2008.2005538

16. Costa, F., E. Carrubba, A. Monorchio, and G. Manara, "Multi-frequency highly directive Fabry-Perot based antenna," Proc. IEEE International Symposium on Antennas and Propagation, 4-8, San Diego, CA, 2009.

17. Aydın, E., "Computation of a tunable slot-loaded equilateral triangular microstrip antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2001-2009, 2009.
doi:10.1163/156939309789932548

18. Wu, X. H., A. A. Kishk, and A. W. Glisson, "A transmission line method to compute the far-field radiation of arbitrarily directed Hertzian dipoles in multilayer dielectric structure: Theory and applications," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 10, 2731-2741, 2006.
doi:10.1109/TAP.2006.882164

19. Luukkonen, O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 6, 1624-1632, 2008.
doi:10.1109/TAP.2008.923327

20. Zhao, T., D. R. Jackson, J. T. Williams, H. D. Yang, and A. A. Oliner, "2-D periodic leaky-wave antennas --- Part I: Metal patch design," IEEE Trans. Antennas Propagation, Vol. 53, No. 11, 3505-3514, 2005.
doi:10.1109/TAP.2005.858579

21. Tretyakov, S., Analytical Modelling in Applied Electromagnetics, Artech House, Boston, 2003.

22. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

23. Vu, T.-H., S. Collardey, A.-C. Tarot, and K. Mahdjoubi, "Input impedance of Fabry-Perot, EBG and leaky-wave antennas excited by a line source," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 248-252, 2009.
doi:10.1109/LAWP.2009.2013883

24. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

25. Zhang, J. C., Y. Z. Yin, and S. F. Zheng, "Double screen FSSs with multi-resonant elements for multiband, broadband applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2209-2218, 2009.
doi:10.1163/156939309790109333

26. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

27. Schantz, H. G., "Planar elliptical element ultra-wideband dipole antennas," IEEE AP-S Int. Symp. Dig., Vol. 3, 44-47, San Antonio, TX, Jun. 2002.

28. Costa, F., A. Monorchio, and G. Manara, "Low-profile tunable and steerable Fabry-Perot antenna for software defined radio applications," IEEE International Symposium on Antennas and Propag., Toronto, Canada, Jul. 11-17, 2010.

29. Haykin, S., "Cognitive radio: Brain-empowered wireless communications," IEEE J. Sel. Areas Commun., Vol. 23, No. 2, 201-220, Feb. 2005.
doi:10.1109/JSAC.2004.839380

30. Jorswieck, E. A. and R. Mochaourab, "Beamforming in underlay cognitive radio: Null-shaping constraints and greedy user selection," Proc. CROWNCOM, 2010, 5th international Conference on Cognitive Radio Oriented Wireless Networks and Communications, 1-5, 2010.