Vol. 16
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-23
Spinor and Hertzian Differential Forms in Electromagnetism
By
Progress In Electromagnetics Research M, Vol. 16, 197-211, 2011
Abstract
The purpose of this paper is to extend to spinor electromagnetism the differential forms, based on the Cartan exterior derivative and originally developed for tensor fields, in a very compact way. To this end, differential electromagnetic forms are first compared to conventional tensors. Then, using the local isomorphism between the O (3,C) and SL (2,C) groups supplying the well known connection between complex vectors and traceless second rank spinors, they are generalized to spinor electromagnetism and to Proca fields. These differential forms are finally expressed in terms of Hertz potentials.
Citation
Pierre Hillion, "Spinor and Hertzian Differential Forms in Electromagnetism," Progress In Electromagnetics Research M, Vol. 16, 197-211, 2011.
doi:10.2528/PIERM10111501
References

1. Cartan, E., Lecons sur les Invariants Integraux, Hermann, Paris, 1958.

2. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1976.

3. Jones, D. S., Acoustic and Electromagnetic Waves, Clarendon, Oxford, 1986.

4. Moller, C., The Theory of Relativity, Clarendon, Oxford, 1952.

5. Eddington , A. S., The Mathematical Theory of Relativity, University Press, Cambridge, 1951.

6. De Rham "Differential Manifolds," Springer, 1984.

7. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, , W. H. Freeman, San Francisco, 1973.

8. Meetz, L and W. L. Engl, Electromagnetic Felder, Springer, 1980.

9. Deschamps, G. A., "Electromagnetism and differential forms," IEEE Proceedings, Vol. 69, 676-696, 1981.
doi:10.1109/PROC.1981.12048

10. Hehl, , F. W. and Y. Obhukov, Foundations of Classical Electrodynamics, Birkhauser, 2003.
doi:10.1007/978-1-4612-0051-2

11. Hehl, F. W., "Maxwell's equations in Minkowski's world," Annalen. der Physik, Vol. 17, 691-704, 2008.
doi:10.1002/andp.200810320

12. Warnick, K. F. and P. Russer, "Two, three and four dimensional electromagnetism using differential forms," Turkish Journal of Electrical. Engineering, Vol. 14, 151-172, 2006.

13. Lindell, I. V., Differential Forms in Electromagnetism, Wiley IEEE, Hoboken, 2004.
doi:10.1002/0471723096

14. Bossavit , A., "Differential forms and the computation of fields and forces in electromagnetism," European Journal of Mechanics B, Fluids, Vol. 10, 474-488, 1991.

15. Stern, A., Y. Tong, M. Desbrun, and J. E. Marsden, "Variational integrators for Maxwell's equations with sources," PIERS Online, Vol. 4, No. 7, 711-715, 2008.
doi:10.2529/PIERS071019000855

16. Russer, P., "Geometrical concepts in teaching electromagnetics," Course, Nottingham available on Google; See also: P. Russer,Electromagnetic Circuit and Antenna Design for Communications Engineering, Artech House, Boston, 2006.

17. Post, E. J., Formal Structure of Electromagnetism, North Holland, 1962.

18. Cartan, E., "Lecons sur la theorie des Spineurs," Hermann, Paris, 1938.

19. Corson, E. M., Introduction to Spinors, Tensors and Relativistic Wave Equations, Blackie & Sons, London, 1954.

20. Penrose, R. and W. Rindler, Spinors and Space-time, University Press, Cambridge, 1968.

21. Laporte, O. and G. E. Uhlenbeck, "Application of spinor analysis to the Maxwell and Dirac equations," Physical Review, Vol. 37, 1380-1387, 1931.
doi:10.1103/PhysRev.37.1380

22. Hillion, P. and S. Quinnez, "Proca and electromagnetic fields," International Journal of Theortetical Physics, Vol. 25, 727-733, 1986.
doi:10.1007/BF00668718

23. Mustafa, E. and J. M. Cohen, "Hertz and Debye potentials and electromagnetic fields in general relativity," Classical and Quantum Gravity, Vol. 4, 1623-1631, 1987.
doi:10.1088/0264-9381/4/6/020

24. Olmsted, J. M. H., "Advanced Calculus," Appleton-Century Crofts, 1961.

25. Dautray, R. and J. L. Lions, Analyse Mathematique et Calcul Numerique Pour les Sciences et Les Techniques, Masson, 1985.

26. Bossavit, A., Computational Electromagnetism, Academic Press, 1997.

27. Ren, Z. and A. Razeh, "Computation of the 3D electromagnetic field using differential forms based elements and dual formalism," International Journal of Numerical Modelling, Vol. 9, 81-96, 1996.
doi:10.1002/(SICI)1099-1204(199601)9:1/2<81::AID-JNM229>3.0.CO;2-J

28. Ren, Z. and A. Bossavit, "A new approach to eddy current problems and numerical evidence of its validity," International Journal of Applied Electromagnetics in Materials, Vol. 3, 39-46, 1992.

29. Hillion, P., "The Wilsons' experiment," Apeiron, Vol. 6, 1-8, 1999.

30. Hillion, P. and S. Quinnez, "Diffraction patterns of circular and rectangular apertures in the spinor formalism of electromagnetism," Journal of Optics, Vol. 16, 5-19, 1985.
doi:10.1088/0150-536X/16/1/001

31. Penrose, R., "Twitor algebra," J. Math. Phys., Vol. 8, 345-367, 1967.
doi:10.1063/1.1705200

32. Witten, E., "Perturbative gauge theory as a string theory in twistor space," Comm. Math. Phys., Vol. 252, 189-258, 2004.
doi:10.1007/s00220-004-1187-3

33. Oliveira, C. C. and de Amaral C. Marcio, "Spinor formalism in gravitation," II Nuovo Cimento., Vol. 47, No. 1, 9-18, 1967.
doi:10.1007/BF02771370

34. Berkovitz, N., "Explaining the pure spinor formalism for the superstring," Journal of the High Energy Physics, Vol. 2008, 2008.
doi:10.1088/1126-6708/2008/01/009

35. Mafra, C. R., "Superstring amplitude in the pure spinor ormalism," Nuclear Physics B, Vol. 171, 292-294, 2007.

36. Stratton, J. A., Electromagnetic Theory, Mac Graw Hill, New York, 1941.

37. Felsen, L. B. and N. Marcuwitz, Radiation and Scattering of Waves, Wiley, Hoboken, 2003.

38. Hillion, P., "Hertz potentials in Boys-Post isotropic chiral media ," Physica. Scripta, Vol. 75, 404-406, 2007.
doi:10.1088/0031-8949/75/4/003

39. Hillion, P., "Hertz potentials in uniaxially anisotropic media," Journal of Phsyics A: Mathematical Theory, Vol. 41, 365401, 2008.
doi:10.1088/1751-8113/41/36/365401

40. Mc Crea , W. H., "Hertzian electromagnetic potentials," Proceedings Royal Society A, Vol. 290, 447-457, London, 1957.

41. Essex, E. A., "Hertz vectror potentials of electromagnetic theory," American Journal of Physics, Vol. 45, 1099-1101, 1977.
doi:10.1119/1.10955

42. Cough, W., "An alternative approach to Hertz vectors," Progress In Electromagnetic Research, Vol. 12, 205-217, 1996.

43. Wu, A. C. T., "Debye scalar potentials for electromagnetic fields," Physical Review, Vol. 34, 3109-3114, 1986.

44. Lindell, I. V., "Potential representation of electromagnetic fields in decomposable anisotropic media," Journal of Physics D, Vol. 33, 3169-3172, 2001.

45. Weiglhofer, W. S., "Isotropic chiral media and scalar Hertz potentials," Journal of Physics A: Mathematics, General, Vol. 21, 2249-2251, 1988.
doi:10.1088/0305-4470/21/9/036

46. Przezriecki, S. S. and R. A. Hurd, "A note on scalar Hertz potentials for gyrotropic media," Applied Physics, Vol. 20, 313-317, 1979.
doi:10.1007/BF00895002

47. Hillion, P., "Self-dual electromagnetism in isotropic media," Nuovo. Cimento., Vol. 121B, 11-25, 2006.

48. Synge, J. L., Relativity: The Special Theory, North-Holland, 1958.

49. Christianto, V., F. L. Smarandache, F. Lichtenberg, and , "A note on extended Proca equation," Progress in Physics, Vol. 1, 40-44, 2009.