1. Cartan, E., Lecons sur les Invariants Integraux, Hermann, Paris, 1958.
2. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1976.
3. Jones, D. S., Acoustic and Electromagnetic Waves, Clarendon, Oxford, 1986.
4. Moller, C., The Theory of Relativity, Clarendon, Oxford, 1952.
5. Eddington , A. S., The Mathematical Theory of Relativity, University Press, Cambridge, 1951.
6. De Rham "Differential Manifolds," Springer, 1984.
7. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, , W. H. Freeman, San Francisco, 1973.
8. Meetz, L and W. L. Engl, Electromagnetic Felder, Springer, 1980.
9. Deschamps, G. A., "Electromagnetism and differential forms," IEEE Proceedings, Vol. 69, 676-696, 1981.
doi:10.1109/PROC.1981.12048
10. Hehl, , F. W. and Y. Obhukov, Foundations of Classical Electrodynamics, Birkhauser, 2003.
doi:10.1007/978-1-4612-0051-2
11. Hehl, F. W., "Maxwell's equations in Minkowski's world," Annalen. der Physik, Vol. 17, 691-704, 2008.
doi:10.1002/andp.200810320
12. Warnick, K. F. and P. Russer, "Two, three and four dimensional electromagnetism using differential forms," Turkish Journal of Electrical. Engineering, Vol. 14, 151-172, 2006.
13. Lindell, I. V., Differential Forms in Electromagnetism, Wiley IEEE, Hoboken, 2004.
doi:10.1002/0471723096
14. Bossavit , A., "Differential forms and the computation of fields and forces in electromagnetism," European Journal of Mechanics B, Fluids, Vol. 10, 474-488, 1991.
15. Stern, A., Y. Tong, M. Desbrun, and J. E. Marsden, "Variational integrators for Maxwell's equations with sources," PIERS Online, Vol. 4, No. 7, 711-715, 2008.
doi:10.2529/PIERS071019000855
16. Russer, P., "Geometrical concepts in teaching electromagnetics," Course, Nottingham available on Google; See also: P. Russer,Electromagnetic Circuit and Antenna Design for Communications Engineering, Artech House, Boston, 2006.
17. Post, E. J., Formal Structure of Electromagnetism, North Holland, 1962.
18. Cartan, E., "Lecons sur la theorie des Spineurs," Hermann, Paris, 1938.
19. Corson, E. M., Introduction to Spinors, Tensors and Relativistic Wave Equations, Blackie & Sons, London, 1954.
20. Penrose, R. and W. Rindler, Spinors and Space-time, University Press, Cambridge, 1968.
21. Laporte, O. and G. E. Uhlenbeck, "Application of spinor analysis to the Maxwell and Dirac equations," Physical Review, Vol. 37, 1380-1387, 1931.
doi:10.1103/PhysRev.37.1380
22. Hillion, P. and S. Quinnez, "Proca and electromagnetic fields," International Journal of Theortetical Physics, Vol. 25, 727-733, 1986.
doi:10.1007/BF00668718
23. Mustafa, E. and J. M. Cohen, "Hertz and Debye potentials and electromagnetic fields in general relativity," Classical and Quantum Gravity, Vol. 4, 1623-1631, 1987.
doi:10.1088/0264-9381/4/6/020
24. Olmsted, J. M. H., "Advanced Calculus," Appleton-Century Crofts, 1961.
25. Dautray, R. and J. L. Lions, Analyse Mathematique et Calcul Numerique Pour les Sciences et Les Techniques, Masson, 1985.
26. Bossavit, A., Computational Electromagnetism, Academic Press, 1997.
27. Ren, Z. and A. Razeh, "Computation of the 3D electromagnetic field using differential forms based elements and dual formalism," International Journal of Numerical Modelling, Vol. 9, 81-96, 1996.
doi:10.1002/(SICI)1099-1204(199601)9:1/2<81::AID-JNM229>3.0.CO;2-J
28. Ren, Z. and A. Bossavit, "A new approach to eddy current problems and numerical evidence of its validity," International Journal of Applied Electromagnetics in Materials, Vol. 3, 39-46, 1992.
29. Hillion, P., "The Wilsons' experiment," Apeiron, Vol. 6, 1-8, 1999.
30. Hillion, P. and S. Quinnez, "Diffraction patterns of circular and rectangular apertures in the spinor formalism of electromagnetism," Journal of Optics, Vol. 16, 5-19, 1985.
doi:10.1088/0150-536X/16/1/001
31. Penrose, R., "Twitor algebra," J. Math. Phys., Vol. 8, 345-367, 1967.
doi:10.1063/1.1705200
32. Witten, E., "Perturbative gauge theory as a string theory in twistor space," Comm. Math. Phys., Vol. 252, 189-258, 2004.
doi:10.1007/s00220-004-1187-3
33. Oliveira, C. C. and de Amaral C. Marcio, "Spinor formalism in gravitation," II Nuovo Cimento., Vol. 47, No. 1, 9-18, 1967.
doi:10.1007/BF02771370
34. Berkovitz, N., "Explaining the pure spinor formalism for the superstring," Journal of the High Energy Physics, Vol. 2008, 2008.
doi:10.1088/1126-6708/2008/01/009
35. Mafra, C. R., "Superstring amplitude in the pure spinor ormalism," Nuclear Physics B, Vol. 171, 292-294, 2007.
36. Stratton, J. A., Electromagnetic Theory, Mac Graw Hill, New York, 1941.
37. Felsen, L. B. and N. Marcuwitz, Radiation and Scattering of Waves, Wiley, Hoboken, 2003.
38. Hillion, P., "Hertz potentials in Boys-Post isotropic chiral media ," Physica. Scripta, Vol. 75, 404-406, 2007.
doi:10.1088/0031-8949/75/4/003
39. Hillion, P., "Hertz potentials in uniaxially anisotropic media," Journal of Phsyics A: Mathematical Theory, Vol. 41, 365401, 2008.
doi:10.1088/1751-8113/41/36/365401
40. Mc Crea , W. H., "Hertzian electromagnetic potentials," Proceedings Royal Society A, Vol. 290, 447-457, London, 1957.
41. Essex, E. A., "Hertz vectror potentials of electromagnetic theory," American Journal of Physics, Vol. 45, 1099-1101, 1977.
doi:10.1119/1.10955
42. Cough, W., "An alternative approach to Hertz vectors," Progress In Electromagnetic Research, Vol. 12, 205-217, 1996.
43. Wu, A. C. T., "Debye scalar potentials for electromagnetic fields," Physical Review, Vol. 34, 3109-3114, 1986.
44. Lindell, I. V., "Potential representation of electromagnetic fields in decomposable anisotropic media," Journal of Physics D, Vol. 33, 3169-3172, 2001.
45. Weiglhofer, W. S., "Isotropic chiral media and scalar Hertz potentials," Journal of Physics A: Mathematics, General, Vol. 21, 2249-2251, 1988.
doi:10.1088/0305-4470/21/9/036
46. Przezriecki, S. S. and R. A. Hurd, "A note on scalar Hertz potentials for gyrotropic media," Applied Physics, Vol. 20, 313-317, 1979.
doi:10.1007/BF00895002
47. Hillion, P., "Self-dual electromagnetism in isotropic media," Nuovo. Cimento., Vol. 121B, 11-25, 2006.
48. Synge, J. L., Relativity: The Special Theory, North-Holland, 1958.
49. Christianto, V., F. L. Smarandache, F. Lichtenberg, and , "A note on extended Proca equation," Progress in Physics, Vol. 1, 40-44, 2009.