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SPINOR AND HERTZIAN DIFFERENTIAL FORMS IN
ELECTROMAGNETISM
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Abstract—The purpose of this paper is to extend to spinor
electromagnetism the differential forms, based on the Cartan exterior
derivative and originally developed for tensor fields, in a very compact
way. To this end, differential electromagnetic forms are first compared
to conventional tensors. Then, using the local isomorphism between
the O(3,C) and SL(2,C) groups supplying the well known connection
between complex vectors and traceless second rank spinors, they are
generalized to spinor electromagnetism and to Proca fields. These
differential forms are finally expressed in terms of Hertz potentials.

1. INTRODUCTION

Differential forms pioneered by Cartan [1] (a differential p-form is
a covariant skew-symmetric tensor field of degree p) and introduced
some years ago in electromagnetism, may appear as a challenge to
the conventional formalism described by scalars, vectors, tensors. All
these entities, leaving aside General Relativity, are defined either in
the Einstein 4-world with the Minkowski distance ds2 = c2dt2− dx2−
dy2 − dz2 or in the Newton (3 + 1)-world with the space Euclidean
distance ds2 = dx2 + dy2 + dz2 and the time t apart.

Then, the electromagnetic field in the Minkowski space-time is
defined by the skew tensors Fµν(E,B), Gµν(D,H) solutions of the
Maxwell equations [2, 3] covariant under the SO(3,1) group locally
isomorphic to the Lorentz group SL(2,C)

∂σFµν + ∂µFνσ + ∂νFσµ = 0 (1a)
∂νG

µν = Jµ (1b)
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in which the 4-vector Jµ is the electric current, the Greek indices take
the values 1, 2, 3, 4 (with x1 = x, x2 = y, x3 = z, x4 = ct, ∂j = ∂/∂xj ,
∂4=1/c∂/∂t) and the summation convention is used.

But, this tensor formalism is not well suited to manage
electromagnetic processes of practical importance with as consequence
to promote electromagnetism in the Newton (3 + 1)-world.

Then the components E (electric field), B (magnetic induction) of
Fµν and H (magnetic field), D (dielectric displacement) of Gµν become
3-vectors while the current Jµ splits into a 3-vector j and a scalar ρ so
that the Maxwell equations have the Gibbs representation

∇ ·B = 0, ∇∧E + 1/c∂tB = 0 (2a)
∇ ·D = ρ, ∇∧H− 1/c∂tD = j (2b)

in which ∧ is the wedge product symbol.
Remark: For a Riemannian space-time with the metric ds2 =

gµνdxµdxν , Eq. (1a) is unchanged [4, 5] while Eq. (1b) becomes
∂ν |g|1/2Fµν = Jµ in which |g| is the determinant of gµν .

In a isotropic, homogeneous medium D = εE, B = µH with
permittivity ε and permeability µ, we introduce the complex vector
Λ =

√
ε E + i

√
µH, i =

√− 1, the Λj ’s are in fact the components of
the self-dual tensor Fµν + i/2εµναβFαβ in which εµναβ is the Levi-
Civita tensor. Then, the Maxwell equations have the self-adjoint
representation

∇ ∧Λ− i(n/c)∂tΛ = ij
√

µ, n∇ ·Λ = ρ
√

µ , n = (εµ)1/2 (2c)

and, these equations are covariant under the 3D-complex rotation
group O(3,C) isomorphic to the SL(2,C) group.

In this work, the differential forms of Eqs. (2a), (2b) are first
discussed and then, a generalization of the complex vector Λ is
used to define spinor electromagnetic differential forms. Finally, the
electromagnetic field is expressed in terms of Hertz differential forms.

2. ELECTROMAGNETIC DIFFERENTIAL FORMS

Following De Rham [6] {see [7] for the physical applications} and
Meetz-Engl [8], Deschamps [9] introduced in electromagnetism the
notion of exterior differential forms, gene-rating numerous works [10–
16] on this subject. Exterior means that the algebra of differential
forms is endowed with the Cartan exterior derivative d assigning to a
p-form w (in this Note, differential forms are represented by underlined
expressions) a (p + 1)-form dw such that d is linear and

d(w1 ∧ w2) = dw1 ∧ w2 + (−1)pw1 ∧ dw2, ddw = 0 (3)
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In the (3+1)-world, the Maxwell equations with d = dx∂x+dy∂y+dz∂z

have the differential form representation
d ∧ E + (1/c)∂tB = 0, d ∧B = 0 (4a)
d ∧H − (1/c)∂tD = j, d ∧D = ρ (4b)

E, H are the 1-form
E = Exdx + Eydy + Ezdz, H = Hxdx + Hydy + Hzdz (5a)

and B, D the 2-forms
B = Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy,

D = Dxdy ∧ dz + Dydz ∧ dx + Dzdx ∧ dy
(5b)

while J is a 2-form and ρ a 3-form

J = jxdy ∧ dz + jydz ∧ dx + jzdx ∧ dy, ρ = ρdx ∧ dy ∧ dz (5c)

In the Minkowski 4-world, the following 2-forms are defined [13] with
the Fµν , Gµν tensor fields

F = 1/2Fµνdxµ ∧ dxν , (6a)
G = 1/2Gµνdxµ ∧ dxν (6b)

with in (6b) Gµν = εµναβ Gαβ where εµναβ is the antisymmetric Levi-
Civita tensor.

Let d = dxµ∂µ be the Cartan exterior derivative. Applying d to
(6a), (6b) gives the 3-form

dF = 1/2∂ρFµνdxρ ∧ dxµ ∧ dxν , (7a)
dG = 1/2∂ρGµνdxρ ∧ dxµ ∧ dxν (7b)

and, according to the property of the Cartan exterior derivative, the
electromagnetic field is solution of the 3-form equations

dF = 0, (8a)
dG = J, (8b)

in which J is the 3-form
J = 1/3!jµεµνρσdxν ∧ dxρ ∧ dxσ (9)

The constitutive relations between the components (E, B) and (D, H)
of the electromagnetic field in the Minkowski space-time have according
to Post [17] the covariant expression

Gµν = 1/2χµναβFαβ (10)

the tensor χµναβ has symmetries reducing to twenty the number of its
independent components. Then, the 2-form G is changed into ∗F (a
notation introduced by analogy with the Hodge star operator [8–16])

∗F = 1/2χµν
ρσFµνdxρ ∧ dxσ (11)
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so that ∗dF has to be substituted to G in (8).
To the self-dual field Λ is associated the differential form L =√

εF + i
√

µG with according to (6), (9), εijk being the Levi-Civita
tensor

F = Ej

(
dxj ∧ cdt

)
+ 1/2εjklBj

(
dxk ∧ dxl

)
(12a)

G = Hj

(
dxj ∧ cdt

)− 1/2εjklDj

(
dxk ∧ dxl

)
(12b)

J = 1/2εjklJj

(
dxk ∧ dxl ∧ cdt

)
+ ρ (dx ∧ dy ∧ dz) (12c)

so that the differential form L becomes

L = Λj

(
dxj ∧ cdt

)
+ in/2εjklΛj

(
dxk ∧ dxl

)
(13)

and, the differential form Eq. (8) reduces to dL = J
√

µ. So, with
differential forms, electromagnetism is written very compactly.

3. SPINOR ELECTROMAGNETIC DIFFERENTIAL
FORMS

3.1. Spinors in Electromagnetism

Maxwell’s equations, in absence of charge and current, (see Section 4.2
when charge and cur-rent exist) have the Gibbs representation

∇∧E + (1 + c)∂tB = 0, ∇∧H− (1 + c)∂tD = 0 (14a)
∇ ·D = 0, ∇ ·B = 0 (14b)

and, introducing the complex vectors

Λ = E + iH, Ω = B + iD (15)

they become

∇ ∧Λ− (i/c)∂tΩ = 0, (16a)
∇ ·Ω = 0 (16b)

In a homogeneous isotropic medium with permittivity ε and
permeability µ, B = µH, D = εE, but more generally ε, µ are some
tensor with components εij , µij .

Now, first rank spinors [18] and {in [19, 20] the spinors of higher
ranks are discussed} are geometrical objects ψA defined on a two-
dimensional complex space satisfying the transformation law ψ′A =
tBAψB, A,B = 1, 2 with the complex 4 transformation matrix ||tBA || and
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a well known connection exists [21, 22] between complex vectors and
traceless second rank spinors ψs

r , φs
r, r, s = 1, 2:

Λx + iΛy = ψ2
1, Λx − iΛy = ψ1

2, Λz = ψ1
1 = −ψ2

2 (17a)

Ωx + iΩy = φ2
1, Ωx − iΩy = φ1

2, Ωz = φ1
1 = −φ2

2 (17b)

So, D, Dt being the 2×2 matrix derivative operators with components

D11 = −D22 = ∂z, D12 = ∂x + i∂y, D21 = ∂x − i∂y

Dt
11 = Dt

22 = 1/c∂t, Dt
12 = Dt

21 = 0
(18)

the Maxwell equations have the Proca representation [19]

DΨ−DtΦ = 0 (19)

In which Ψ, Φ are the matrices with components

ψ1
1 =− ψ2

2, ψ2
1, ψ1

2; φ1
1 = −φ2

2, φ2
1, φ1

2 (19a)

Taking into account (17(a), (17b), it is proved in Appendix A that
Eqs. (19) imply Eq. (14).

Now, let Λ be the 1-form and Ω the 2-form

Λ = Λxdx + Λydy + Λzdz, (20a)
Ω = Ωx(dy ∧ dz) + Ωy(dz ∧ dx) + Ωz(dx ∧ dy) (20b)

then, using the exterior derivative operator d = dx∂x + dy∂y + dz∂z,
we get

dΛ =(∂yΛz − ∂zΛy)(dy ∧ dz) + (∂zΛx − ∂xΛz)(dz ∧ dx)
+ (∂xΛy − ∂yΛx)(dx ∧ dy)

dΩ =(∂xΩx + ∂yΩy + ∂zΩz)(dx ∧ dy ∧ dz)
(21)

so that the Maxwell equations have the differential form representation
in terms of Proca field

dΛ− (i/c)∂tΩ = 0
dΩ = 0

(22)

it is sufficient to observe that making null the coefficients of the
differentials dxj ∧ dxk gives the Maxwell Eq. (14) which may be
considered as strong solutions of Eq. (22).

3.2. Spinor Differential Forms

Let us introduce the complex coordinates ξ = x + iy, η = x − iy so
that

∂x = ∂ξ+∂η, i∂y = ∂ξ−∂η, dx = 1/2(dξ+dη), idy = 1/2(dξ−dη)
(23)
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Then, substituting (23) into (20a), (20b) and taking into account (17a),
(17b), we get

Λ = 1/2ψ2
1dξ + 1/2ψ1

2dη + ψ1
1dz (24a)

iΩ = 1/2φ1
2(dξ ∧ dz)+1/2φ2

1(dz ∧ dη)+1/2φ1
2(dξ ∧ dz)

+1/2φ1
1(dη ∧ dξ) (24b)

while the exterior derivative operator becomes d = dξ∂ξ + dη∂η + dz∂z

and a simple calculation gives

dΛ =
(
∂ξψ

1
1 − 1/2∂zψ

1
2

)
(dξ ∧ dz) +

(
1/2∂zψ

2
1 − ∂ηψ

1
1

)
(dz ∧ dη)

+
(
1/2∂ηψ

1
2 − 1/2∂ξψ

2
1

)
(dη ∧ dξ) (25)

Substituting (24) and (25) into (22) gives the spinor differential form
equation

dχ = 0 (26)

dχ = χ1
2(dξ ∧ dz) + χ2

1(dz ∧ dη) + χ1
1(dη ∧ dξ) (26a)

in which with ∂τ = 1/c∂t, the components of the spinor differential
form are

χ1
2 = ∂ξψ

1
1 − 1/2∂zψ

1
2 + 1/2∂τφ

1
2

χ2
1 = 1/2∂zψ

2
1 − ∂ηψ

1
1 + 1/2∂τφ

2
1

χ1
1 = 1/2∂ηψ

1
2 − 1/2∂ξψ

2
1 − 1/2∂τφ

1
1

(27)

and (
∂ξψ

2
1 − ∂ηψ

1
2 − ∂zψ

1
1

)
(dξ ∧ dη ∧ dz) = 0 (26b)

The strong solutions χs
r = 0 of (26a) are, taking into account (17),

the Maxwell Eq. (14). These results translate at once in a isotropic
homogeneous medium.

4. HERTZ DIFFERENTIAL FORMS [16, 23]

4.1. (E, B) Forms

Let Π be a Hertz vector [3] on which no a-priori constraint is imposed
except to be differentiable and P be the Hertzian 1-form (∂τ = 1/c∂t)

P = ∂τΠ + cdtΩ (28)

Π is a 1-form, and we introduce the 0-form Ω with an arbitrary
constant γ

Π = Πxdx + Πydy + Πzdz, Ω = γ∇ ·Π (29)
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Applying to (28) the exterior derivative operator d = (∂xdx + ∂ydy +
∂zdz + ∂tdt)∧ gives the 2-form F = dP

F =
{
(dx ∧ cdt)(∂xΩ− ∂2

τ Πx)
}

+ {}+ {}
+c−1∂τ [{(dx ∧ dy)(∂xΠy − ∂yΠx)}+ {}+ {}] (30)

in which the curly brackets are obtained by a circular permutation of
x, y, z. (F corresponds to the Hertz differential form used in [23]).
Now, according to the Poincaré lemma [13, 14]

dF = 0 (31)
so that identifying F with the electromagnetic field 2-form

F =Ex(dx ∧ cdt) + Ey(dy ∧ cdt) + Ez(dz ∧ cdt) + Bz(dx ∧ dy)
+ Bx(dy ∧ dz) + By(dz ∧ dx) (31a)

gives E and B in terms of Hertz potentials
E = γ∇(∇ ·Π)− ∂2

τΠ, B = ∇ ∧ ∂τΠ (32)
so that (E, B) satisfies the first set of Maxwell’s equations: ∇ ·B = 0,
∇∧E + ∂τB = 0. Note that in (32) γ and Π are arbitrary scalar and
vector.

4.2. (D, H) Forms

We first suppose that there is neither charge nor current and that the
medium is homogeneous and isotropic with the constitutive relations
D = εE, H = µ−1B. So, we get at once D, H from (32) but we have to
look for the conditions to impose on γ and Π to make D, H solutions
of the second set of Maxwell’s equations ∇·D = 0, ∇∧H −∂τD = 0.

Then, proceeding somewhat backward to the way followed in
Section 4.1, we start with the electromagnetic 2-form G(D,H) which
becomes for D = εE, H = µ−1B

G(D,H) =−ε[Ex(dy ∧ dz) + Ey(dz ∧ dx) + Ez(dx ∧ dy)]

+µ−1[Bx(dx ∧ cdt)+By(dy ∧ cdt)+Bz(dz ∧ cdt)] (33)
and we impose G =∗ F in which * is the Hodge star operator [6–16]

∗(dx ∧ cdt) = −ε(dy ∧ dz), ∗(dy ∧ cdt) = −ε(dz ∧ dx),
∗(dz ∧ cdt) = −ε(dx ∧ dy),

(34a)

∗(dy ∧ dz) = µ−1(dx ∧ cdt), ∗(dz ∧ dx) = µ−1(dy ∧ cdt),

∗(dx ∧ dy) = µ−1(dz ∧ cdt)
(34b)

Then, applying the *-operator to the 2-form (30) tgives

G = ε
[
(dy ∧ dz)

(
∂xΩ− ∂2

τ Πx

)
+ {}+ {}]

+1/µc−1∂τ [{(dz ∧ cdt)(∂xΠy − ∂yΠx)}+ {}+ {}] (35)
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where as previously, the two curly brackets inside each square bracket
are obtained from the previous one by a circular permutation of x, y,
z.

Applying to (35) the exterior derivative operator d gives with
∆ = ∂2

x + ∂2
y + ∂2

z

dG = ε(dx ∧ dy ∧ dz)
(
∆Ω− ∂2

τΠ
)

+ c∂τ

[
(dx ∧ dz ∧ cdt)[

µ−1(∆Πy − ∂y∇ ·Π)− ε(∂2
τ Πy − ∂yΩ)

]
+ {}+ {}] (36)

Then, in the same way that dF = 0 identically when F is expressed
in terms of Hertz vector, we impose dG = 0 in the same situation which
implies according to (36)

∆Ω− ∂2
τ ∇ ·Π = 0, (37a)

∂τ

[−µ−1∆Π + µ−1∇ (∇ ·Π) + ε
(∇Ω− c∂2

τΠ
)]

= 0 (37b)

Taking into account (29), Eq. (37a) becomes

∇ · (γ∆Π− ∂2
τΠ

)
= 0 (38)

Similarly, we may write (37b)

∂τ

[−∆Π + (1− γεµ)∇(∇ ·Π) + εµ∂2
τΠ

]
= 0 (39)

reducing to (38) for γ = 1/εµ provided that the Hertz potential is
solution of the wave equation(

∆− εµ∂2
τ

)
Π = 0 (40)

When a charge ρ and a current j exist, we introduce the 3-form J :

J = −jx(dy∧dz∧dt)−jy(dz∧dx∧dt)−jz(dx∧dy∧dt)+ρ(dx∧dy∧dz)
(41)

and the equation dG = 0 transforms into dG = J so that with the
vector p such as

(1/c)∂tp = j , ∇ · p = ρ (42)

the Eqs. (37a), (37b) become

∇ · (∆Π− εµ∂2
τΠ

)
= ∇ · p/ε (43a)

∂τ

(
∆Π− εµ∂2

τΠ
)

= 1/ε∂τp (43b)

We get from (43a)

∆Π− εµ∂2
τΠ + p/ε = ∇∧ f (44)

and according to (43b) ∇ ∧ ∂τ f = 0. So, let q be a vector satisfying
the relations

∇ ∧∆q = −p/ε, ∂τq = 0 (45)
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and Π◦ be the vector

Π◦ = Π + ∇ ∧ q (46)

then, both Eqs. (37a), (37b) reduce to the nonhomogeneous wave
equation (

∆− εµ∂2
τ

)
Π = −p/ε (47)

and D = εE, H = µ−1B, with E, B is obtained from (32), Π being
changed into Π◦.

As an application we consider a polarized medium. As easy to
prove, the second set of Maxwell’s equations: ∇ · D = 0, ∇ ∧ H −
(1/c)∂tD = 0 has the further solutions in terms of Hertz potentials

D† = D− (ß/c)∇ · ∂tΠ, H† = H− (
β/c2

)
∂2

t Π− β∇∇ ·Π (48)

that, we write in a isotropic homogeneous medium

D† = εE + P, B/µ = H† + M (49)

in which P, M are the electric and magnetic polarization of the medium
so that according to (48)

P = ß∇∧ ∂τΠ, M = −β∂2
τΠ− β∇∇ ·Π (50)

Π being a solution of the wave equation (∆− εµ∂2
τ )Π = 0.

Writing P = ßB, M = ßE in agreement with (32) the relations (49)
become the Post constitutive relations in a isotropic chiral medium [34],
ß being the chirality parameter

D† = εE− ßB, H† = B/µ− ßE (51)

We now have to look for a differential form consistent with (49) but it
is easier to work with (51). Then, applying the Hodge star operator

∗(dx ∧ cdt) = ε(dy ∧ dz) + ß(dx ∧ cdt),

∗(dy ∧ dz) = µ−1(dx ∧ cdt) + ß(dy ∧ dz)
∗(dy ∧ cdt) = ε(dz ∧ dx) + ß(dy ∧ cdt),

∗(dz ∧ dx) = µ−1(dy ∧ cdt) + ß(dz ∧ dx)
∗(dz ∧ cdt) = ε(dx ∧ dy) + ß(dz ∧ cdt),

∗(dx ∧ dy) = µ−1(dz ∧ cdt) + ß(dx ∧ dy)

(52)

to the 2-form F written according to (31) with the previous definition
of the curly brackets

F = {Ex(dx ∧ cdt) + Bx(dy ∧ dz)}+ {}+ {} (53)
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give G =∗ F and according to (53)

G = {Ex[ε(dy ∧ dz) + ß(dx ∧ cdt)]−Bx[µ−1(dx ∧ cdt) + ß(dy ∧ dz)]}
+{}+ {} = {(εEx + βBx)(dy ∧ dz) + (µ−1Bx − βEx)(dx ∧ cdt)}
+{}+ {} (54)

The comparison of (35) and (54) implies (50).
Incidentally, the Post constitutive relations have the remarkable

property to preserve the dissymmetry between the two sets of
Maxwell’s equations which is a particular feature among the great
diversity of proposed constitutive relations This makes calculations
easier [37] for radiation from an electric dipole source and for
Cherenkov radiation.

Hertz potentials have also been recently used [38] to get a complete
description of refraction in a uniaxial anisotropic medium for harmonic
plane waves and Gaussian beams. With oz as principal axis and, to
work with F and G, one has just to change ε (ε11 = ε22) into η = ε33

in the third relation (34a).

5. CONCLUSION

The differential forms give a compact description of Maxwell’s
equations, see (8), (22), (26), (31), but to get their solutions which are
in fact weak solutions of Maxwell’s equations requires some integration
performed with the help of Stokes’s theorem [22]: let ω be a 2-form,
then ∫∫

S
dω =

∫

C
ω (55)

in which S is an orientable surface with boundary C.
Many works have been devoted to numerical approximations

of (55) for vector fields. Let us consider the Eq. (8b) in the (3 + 1)
Newton space-time, we get from (55)

∫

M
dG =

∫

∂M
G (56)

M is a 2D-manifold in R3 with the boundary ∂M . It has been
proved [13] that the finite element technique, largely used in the
numerical simulation of partial differential equations [23] may be
applied to differential forms. Then, as approximations of

∫
dG =

∫
J ,

we get the integrals∫

M
G ∧ dα =

∫

M
Jα for any α ∈ A (57)
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α is 0-form belonging to the set A of test functions which are for
differential forms the Whit-ney functions [24] while dα is a 1-form. So
the integrands in both sides of Eq. (57) are 2-forms consistent with
the 2D-dimension of M described by a family of triangular surface
elements [25, 26].

For spinor fields using (26), we get similarly from (55)
∫

M
dχ =

∫

∂M
χ (58)

where M is now a 2D-manifold in the complex spin space. So, an
important numerical work has still to be made to get approximations
of (58).

In some cases, analytical solutions may be obtained in terms of
differential forms for fields and currents as for instance for the Wilsons’
experiment [10, p. 354], which makes a comparison possible with the
conventional explanation [29] of this experiment.

The spinor formalism was precedently used in two different
domains: analysis of diffraction patterns of electromagnetic fields
by apertures [30] and comparison of the Witten-Penrose [31, 32]
and Infeld = Van Der Waerden spinor approaches to General
Relativity [33]. But recently, the spinor formalism has appeared as an
appropriate tool to explain the superstring theory [34, 35]. Then, the
spinor differential forms with their capacity to supply weak solutions
could offer a new impetus to this theory.

Hertz potentials known from the start of electromagnetic
theory [36] do not seem to have been extensively used in spite of
noticeable exception [3, 37] They are a useful tool to analyze electric
and magnetic multipole radiation in wave guides [38–42] as well as to
cope with anisotropy, bi-anisotropy and chiral isotropy [43–46]. Finally
Hertz and Debye potentials intervene to tackle electromagnetism in
General Relativity [23, 40]. To check the contribution of hertzian
differential forms to these problems will be an interesting job.

Self-dual electromagnetic fields have also been known for a
long time [34] and their covariance under the O(3,C) group
makes them a useful tool in different situations, for instance to
analyze the propagation of Gaussian beams in the atmosphere or
radiowave propagation in troposphere [47]. In addition, the self-dual
electromagnetism in isotropic media brings a close connection between
electric and magnetic fields making easier, according to Synge [48],
the physical interpretation of electromagnetic tensor fields. On the
other hand, a look to Goggle suggests a new interest [49] for the Proca
equation, an interest which could embrace spinor differential forms.
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APPENDIX A.

We get explicitly from (19) the equations with ∂τ = 1/c∂t

∂zψ
1
1 + (∂x + i∂y)ψ1

2 − ∂τφ
1
1 = 0 (A1a)

∂zψ
2
1 − (∂x + i∂y)ψ1

1 − ∂τφ
2
1 = 0 (A1b)

(∂x − i∂y)ψ1
1 − ∂zψ

1
2 − ∂τφ

1
2 = 0 (A1c)

(∂x − i∂y)ψ2
1 + ∂zψ

1
1 −+∂τφ

1
1 = 0 (A1d)

Substituting (17a), (17b) into (A1), it is easily checked that Eqs. (A1a)
and (A1d) give the third Eq. (14a) since taking into account (14b),

∂zAa + (∂x + i∂y) (Λx − iΛy)− ∂τΛz = 0 (A2)

(A2) reduces to i∂yΛx − i∂xΛy − ∂τΛz = 0.
We get from (A1b) and (A1c) the two equations

i(∂zΛy − ∂yΛz − ∂τΩx + (∂zΛx − ∂xΛz − i∂τΩy) = 0 (A3)
i(∂zΛy − ∂yΛz − ∂τΩx + (∂xΛz − ∂zΛx + i∂τΩy) = 0 (A4)

Summing and subtracting (A3) and (A4) gives the first two Eq. (14a).
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