Vol. 28
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-01-26
MIMO Radar Array for Termite Detection and Imaging
By
Progress In Electromagnetics Research B, Vol. 28, 75-94, 2011
Abstract
In this paper, we describe the design of a hybrid 24 GHz RADAR array for termite detection and imaging. The array uses MIMO techniques to provide transmit beam steering and null steering in conjunction with the Matrix Enhanced Matrix Pencil (MEMP), which provides direction of arrival processing. We describe the selection of our MIMO orthogonal codes and test their suitability. Simulated results are shown for our array design and MIMO processing in a range of applications MIMO enables us to produce flexible nulling and beam steering for our transmitter array as well as reducing multipath re°ections and narrowband interference. MIMO processing also produces large time savings, enabling longer, more accurate acquisitions which can increase SNR. Transmitter beam-forming, produces an SNR improvement of 18.2 dB and can be used to reject clutter by up to 20 dB. Flexible nulling can reject interferers still further.
Citation
Nick W. D. Le Marshall, and Andrew Z. Tirkel, "MIMO Radar Array for Termite Detection and Imaging," Progress In Electromagnetics Research B, Vol. 28, 75-94, 2011.
doi:10.2528/PIERB10102802
References

1. Caulfield, R. and P. Daly, An analysis of termite damage in Sydney and Melbourne, Hawthorn, Victoria, Australia, 2006.

2. Tirkel, A. Z., G. J. Sanderson, and R. J. Davies, Termite detection system, 6313643, June 11, 2001.

3. National telecommunications and information administration, Federal Standard 1037C, 1996.

4. Le Marshall, N. W. D. and A. Z. Tirkel, "Modified matrix pencil algorithm for termite detection with high resolution RADAR," Progress In Electromagmnetics Research C, Vol. 16, 51-67, September 2010.
doi:10.2528/PIERC10060903

5. Le Marshall, N. W. D., G. A. Rankin, and A. Z. Tirkel, "High resolution, wide coverage termite imager," PIERS Proceedings, 663-667, Xian, China, March 22-26, 2010.

6. Hua, Y., "Estimating two-dimensional frequencies by matrix enhancement and MEMP," IEEE Transactions on Signal Processing, Vol. 40, No. 9, 2267-2280, September 1992.
doi:10.1109/78.157226

7. Paulraj, A., R. Roy, and T. Kailath, "Estimation of signal parameters via rotational invariance technique --- ESPRIT," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, July 1989.

8. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276, March 1986.
doi:10.1109/TAP.1986.1143830

9. Bachl, R., "The forward-backward averaging technique applied to TLS-ESPRIT processing ," IEEE Transactions on Signal Processing, Vol. 43, No. 11, 2691-2699, November 1995.
doi:10.1109/78.482118

10. Le Marshall, N. W. D. and A. Z. Tirkel, "The application of the MEMP and beamforming to determine the presence of termites in situ ," IEEE Eurocon 2009 Proceedings, 1568-1572, 2009.
doi:10.1109/EURCON.2009.5167850

11. Le Marshall, N. W. D., G. A. Rankin, and A. Z. Tirkel, "Hybrid array for the detection and imaging of termites," Radio and Wireless Symposium 2010, 288-291, New Orleans, USA, 2010.

12. Brown, G., "Spartan-DSP takes aim at affordable DSP performanc," DSP Magazine, No. 3, 8-9, 2007.

13. Burintramart, S. and T. Sarkar, "Target localization in three dimensions," Advances in Direction of Arrival Estimation, Artech House, 2005.

14. Friedlander, B., "Direction finding using an interpolated array," International Conference on Acoustics, Speech and Signal Processing, Vol. 5, 2951-2954, 1990.

15. Kyungjung, K., T. K. Sarkar, and M. S. Palma, "Adaptive processing using a single snapshot for a nonuniformly spaced array in the presence of mutual coupling and near-field scatterers," IEEE Transactions on Antennas And Propagation, Vol. 50, No. 5, 582-590, May 2002.
doi:10.1109/TAP.2002.1011223

16. Donnet, B. J. and I. D. Longstaff, "MIMO radar, techniques and opportunities," 3rd European Radar Conference, 2006, 112-115, Manchester, September 2006.

17. Everett, D., "Periodic digital sequences with pseudonoise properties," GEC Journal, Vol. 33, No. 3, 115-126, 1996.

18. Bak, P., C. Tang, and K. Wiesenfeld, "Self-organized criticality: An explanation of the 1/f noise," Physical Review Letters, Vol. 59, No. 4, 381-384, 1987.
doi:10.1103/PhysRevLett.59.381

19. Schottky, W., "Small-shot effect and flicker effect," Physical Review, Vol. 28, No. 6, 1331, 1926.
doi:10.1103/PhysRev.28.1331

20. Dandekar, K. R., L. Hao, and X. Guanghan, "Experimental study of mutual coupling compensation in smart antenna applications," IEEE Transactions on Wireless Communications, Vol. 1, No. 3, 1536-1276, July 2002.

21. Boyd, S. and L. Vandenberghe, Convex Optimization, Cambridge University Press, March 2004.

22. Boyd, M. and S. Grant, CVX: MATLAB software for disciplines convex programming, June 2009, http://stanford.edu/»boyd/cvx.

23. Toh, K., M. J. Todd, and R. H. Tutunc, SDPT3 --- A MATLAB software for semidefinite-quadratic-linear programming, 2009, http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

24. Lebret, H. and S. Boyd, "Antenna array pattern synthesis via convex optimization," IEEE Transactions on Signal Processing, Vol. 45, No. 3, 526-532, March 1997.
doi:10.1109/78.558465

25. Albagory, Y. A., M. Dessouky, and H. Sharshar, "An approach for low sidelobe beamforming in uniform concentric circular arrays," Wireless Personal Communications, Vol. 43, No. 4, 1363-1368, June 2007.
doi:10.1007/s11277-007-9310-3