Vol. 27
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-12-13
Complex Image Method Analysis of a Plane Wave-Excited Subwavelength Circular Aperture in a Planar Screen
By
Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011
Abstract
A complex image method is presented for the analysis of a subwavelength circular aperture in a perfectly conducting screen of infinitesimal thickness illuminated by a plane wave. The method is based on the Bethe-Bouwkamp quasi static model of the aperture field and uses the spectral domain formulation as the point of departure. Closed-form expressions are obtained for the electromagnetic fields valid for all observation points. Sample numerical results demonstrate the accuracy and efficiency of the method for both normal and oblique illuminations, including an evanescent wave. In the latter case, the results show a circulating power flux and enhanced field confinement near the aperture.
Citation
Krzysztof A. Michalski, "Complex Image Method Analysis of a Plane Wave-Excited Subwavelength Circular Aperture in a Planar Screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011.
doi:10.2528/PIERB10101602
References

1. Thio, T., K. M. Pellerin, R. A. Linke, and H. J. Lezec, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett., Vol. 26, 1972-1974, 2001.
doi:10.1364/OL.26.001972

2. Ducourtieux, S., S. Grésillon, J. C. Rivoal, C. Vannier, C. Bainier, D. Courjon, and H. Cory, "Imaging subwavelength holes in chromium films in scanning near-field optical microscopy. Comparison between experiments and calculation," Eur. Phys. J. Appl. Phys., Vol. 26, 35-43, 2004.
doi:10.1051/epjap:2004014

3. Lin, Y., M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, "Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy," Sens. Actuators A, Vol. 133, 311-316, 2007.
doi:10.1016/j.sna.2006.05.047

4. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, 163-182, Oct. 1944.
doi:10.1103/PhysRev.66.163

5. Bouwkamp, C. J., "On Bethe's theory of diffraction by small holes," Philips Res. Rep., Vol. 5, 321-332, Oct. 1950.

6. Bouwkamp, C. J., "Diffraction theory. A critique of some recent developments,", Math. Res. Group, Res. Rep. No. EM-50, New York University, Washington Sq. College of Arts and Science, New York, Apr. 1953.

7. Bouwkamp, C. J., "Diffraction theory," Rep. Progr. Phys., Vol. 17, 35-100, 1954.
doi:10.1088/0034-4885/17/1/302

8. Dunn, R. C., "Near-field scanning optical microscopy," Chem. Rev., Vol. 99, 2891-2927, 1999.
doi:10.1021/cr980130e

9. Leviatan, Y., "Study of near-zone fields of a small aperture," Appl. Phys., Vol. 60, No. 5, 1577-1583, 1986.

10. Dürig, U., D. W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys., Vol. 59, No. 10, 3318-3327, 1986.
doi:10.1063/1.336848

11. Nakano, T. and S. Kawata, "Numerical analysis of the near-field diffraction pattern of a small aperture," J. Mod. Opt., Vol. 39, No. 3, 645-661, 1992.
doi:10.1080/09500349214550611

12. Van Labeke, D., D. Barchiesi, and F. Baida, "Optical characterization of nanosources used in scanning near-field optical microscropy," J. Opt. Soc. Am. A, Vol. 12, No. 4, 695-703, 1995.
doi:10.1364/JOSAA.12.000695

13. Van Labeke, D., F. I. Baida, and J. Vigoureux, "A theoretical study of near-field detection and excitation of surface plasmons," Ultramicroscopy, Vol. 71, 351-359, 1998.
doi:10.1016/S0304-3991(97)00067-3

14. Baida, F. I. and D. Van Labeke, "Propagation and diffraction of locally excited surface plasmons," J. Opt. Soc. Am. A, Vol. 18, 1552-1561, July 2001.

15. Grober, R. D., T. Rutherford, and T. D. Harris, "Modal approximation for the electromagnetic field of a near-field optical probe," Appl. Opt., Vol. 35, 3488-3494, July 1996.

16. Stevenson, R. and D. Richards, "The use of a near-field probe for the study of semiconductor heterostructures," Semicond. Sci. Technol., Vol. 13, 882-886, 1998.
doi:10.1088/0268-1242/13/8/009

17. Petersson, L. E. R. and G. S. Smith, "Transmission of an inhomogeneous plane wave through an electrically small aperture in a perfectly conducting plane screen," J. Opt. Soc. Am. A, Vol. 21, No. 6, 975-980, 2004.
doi:10.1364/JOSAA.21.000975

18. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

19. Lin, C., K. M. Leung, and T. Tamir, "Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations," J. Opt. Soc. Am. A, Vol. 19, 2005-2017, Oct. 2002.

20. Michalski, K. A., "Extrapolation methods for Sommerfeld integral tails (Invited review paper)," IEEE Trans. Antennas Propagat., Vol. 46, 1405-1418, Oct. 1998.

21. Aksun, M. I., "A robust approach for the derivation of closed-form Green's functions," IEEE Trans. Microwave Theory Tech., Vol. 44, 651-658, May 1996.
doi:10.1109/22.493917

22. Li, Y. L. and M. J. White, "Near-field computation for sound propagation above ground --- Using complex image theory," J. Acoust. Soc. Am., Vol. 99, 755-760, Feb. 1996.
doi:10.1121/1.414652

23. Alparslan, A., M. I. Aksun, and K. A. Michalski, "Closed-form Green's functions in planar layered media for all ranges and materials," IEEE Trans. Microwave Theory Tech., Vol. 58, 602-613, Mar. 2010.
doi:10.1109/TMTT.2010.2040354

24. Sarkar, T. K. and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas Propagat. Magaz., Vol. 37, 48-55, Feb. 1995.
doi:10.1109/74.370583

25. Rahmat-Samii, Y. and R. Mittra, "Electromagnetic coupling through small apertures in a conducting screen," IEEE Trans. Antennas Propagat., Vol. 25, 180-187, Mar. 1977.
doi:10.1109/TAP.1977.1141554

26. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.