1. Álvarez, D., O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstruction using a level-set strategy," J. Comput. Phys., Vol. 228, 5710-5721, 2009.
doi:10.1016/j.jcp.2009.04.038
2. Ammari, H., An Introduction to Mathematics of Emerging Biomedical Imaging, Vol. 62, Mathematics and Applications Series, Springer-Verlag, Berlin, 2008.
3. Ammari, H., E. Iakovleva, and D. Lesselier, "A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency," SIAM Multiscale Modeling Simulation, Vol. 3, 597-628, 2005.
doi:10.1137/040610854
4. Ammari, H. and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Vol. 1846, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2004.
5. Ammari, H., H. Kang, H. Lee, and W. K. Park, "Asymptotic imaging of perfectly conducting cracks," SIAM J. Sci. Comput., Vol. 32, 894-922, 2010.
doi:10.1137/090749013
6. Auroux, D. and M. Masmoudi, "Image processing by topological asymptotic analysis," ESAIM: Proc., Vol. 26, 24-44, 2009.
doi:10.1051/proc/2009003
7. Beretta, E. and E. Francini, "Asymptotic formulas for perturbations of the electromagnetic fields in the presence of thin imperfections," Contemp. Math., Vol. 333, 49-63, 2000.
doi:10.1090/conm/333/05953
8. Carpio, A. and M.-L. Rapun, "Solving inhomogeneous inverse problems by topological derivative methods," Inverse Problems, Vol. 24, 045014, 2008.
doi:10.1088/0266-5611/24/4/045014
9. Chen, X., "Subspace-based optimization method in electric impedance tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009.
doi:10.1163/156939309789476301
10. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, 591-595, 2001.
doi:10.1088/0266-5611/17/4/301
11. Cheng, X., B.-I.Wu, H. Chen, and J. A. Kong, "Imaging of objects through lossy layer with defects," Progress In Electromagnetics Research, Vol. 84, 11-26, 2008.
doi:10.2528/PIER08052302
12. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902
13. Colton, D., H. Haddar, and P. Monk, "The linear sampling method for solving the electromagnetic inverse scattering problem," SIAM J. Sci. Comput., Vol. 24, 719-731, 2002.
14. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-20, 2009.
doi:10.2528/PIER09100204
15. Davy, M., J.-G. Minonzio, J. de Rosny, C. Prada, and M. Fink, "Influence of noise on subwavelength imaging of two close scatterers using time reversal method: theory and experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
doi:10.2528/PIER09071004
16. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Problems, Vol. 22, R67-R131, 2006.
doi:10.1088/0266-5611/22/4/R01
17. Eschenauer, H. A., V. V. Kobelev, and A. Schumacher, "Bubble method for topology and shape optimization of structures," Struct. Optim., Vol. 8, 42-51, 1994.
doi:10.1007/BF01742933
18. Hou, S., K. Sølna, and H. Zhao, "A direct imaging algorithm for extended targets," Inverse Problems, Vol. 22, 1151-1178, 2006.
doi:10.1088/0266-5611/22/4/003
19. Kirsch, A. and S. Ritter, "A linear sampling method for inverse scattering from an open arc," Inverse Problems, Vol. 16, 89-105, 2000.
doi:10.1088/0266-5611/16/1/308
20. Lee, H. and W. K. Park, "Location search algorithm of thin conductivity inclusions via boundary measurements," ESAIM: Proc., Vol. 26, 217-229, 2009.
doi:10.1051/proc/2009015
21. Lesselier, D. and B. Duchene, "Buried, 2-D penetrable objects illuminated by line sources: FFT-based iterative computations of the anomalous field," Progress In Electromagnetic Research, Vol. 5, 351-389, 1991.
22. Li, F., X. Chen, and K. Huang, "Microwave imaging a buried object by the GA and using the S11 parameter," Progress In Electromagnetics Research, Vol. 85, 289-302, 2008.
doi:10.2528/PIER08081401
23. Nazarchuk, Z. and K. Kobayashi, "Mathematical modelling of electromagnetic scattering from a thin penetrable target," Progress In Electromagnetic Research, Vol. 55, 95-116, 2005.
doi:10.2528/PIER05022003
24. Park, W. K., "Non-iterative imaging of thin electromagnetic inclusions from multi-frequency response matrix," Progress In Electromagnetic Research, Vol. 106, 225-241, 2010.
doi:10.2528/PIER10052506
25. Park, W. K., "On the imaging of thin dielectric inclusions buried within a half-space," Inverse Problems, Vol. 26, 074008, 2010.
doi:10.1088/0266-5611/26/7/074008
26. Park, W. K. and D. Lesselier, "Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency," J. Comput. Phys., Vol. 228, 8093-8111, 2009.
doi:10.1016/j.jcp.2009.07.026
27. Park, W. K. and D. Lesselier, "MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix," Inverse Problems, Vol. 25, 075002, 2009.
doi:10.1088/0266-5611/25/7/075002
28. Park, W. K. and D. Lesselier, "Reconstruction of thin electromagnetic inclusions by a level set method," Inverse Problems, Vol. 25, 085010, 2009.
doi:10.1088/0266-5611/25/8/085010
29. Ramananjaona, C., M. Lambert, D. Lesselier, and J.-P. Zolé sio, "Shape reconstruction by controlled evolution of a level set: from a min-max formulation to numerical experimentation," Inverse Problems, Vol. 17, 1087-1111, 2001.
doi:10.1088/0266-5611/17/4/335
30. Raza, M. I. and R. E. DuBroff, "Detecting dissimilarities in EM constitutive parameters using differential imaging operator on reconstructed wavefield," Progress In Electromagnetics Research, Vol. 98, 267-282, 2009.
doi:10.2528/PIER09092403
31. Sokolowski, J. and A. Zochowski, "On the topological derivative in shape optimization," SIAM J. Control Optim., Vol. 37, No. 4, 1251-1272, 1999.
doi:10.1137/S0363012997323230
32. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, 785-798, 2009.
doi:10.1163/156939309788019822
33. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001