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ON THE IMAGING OF THIN DIELECTRIC INCLUSIONS
VIA TOPOLOGICAL DERIVATIVE CONCEPT
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Abstract—In this paper, we consider the imaging of thin dielectric
inclusions completed embedded in the homogeneous domain. To image
such inclusion from boundary measurements, topological derivation
concept is adopted. For that purpose, an asymptotic expansion of
the boundary perturbations that are due to the presence of a small
inclusion is considered. Applying this formula, we can design only one
iteration procedure for imaging of thin inclusions by means of solving
adjoint problem. Various numerical experiments without and with
some noise show how the proposed techniques behave.

1. INTRODUCTION

There exists a considerable amount of interesting inverse prob-
lems concerned with the retrieval of inhomogeneities embedded
in a homogeneous medium. Among them, One of the many
interests in inverse problem is the non-destructive evaluation of
electromagnetic inhomogeneities embedded in known media us-
ing high/low frequency time-harmonic electromagnetic propaga-
tion arising in physics [1, 3, 4, 6, 8, 11, 15, 16, 21, 30], medical sci-
ence [2, 9, 14, 20, 32, 33], material engineering [12, 22], and so on. In
order to retrieve such inhomogeneities, various algorithms have been
developed. However, most of which are based on on least-square al-
gorithms and Newton-type iteration schemes so that for a successful
application of such schemes, one needs a good initial guess close enough
to the unknown object. Without it, one might suffer from large compu-
tational costs with the risk of non convergence. Moreover, such schemes
require not only suitable regularization terms depending upon the spe-
cific problem at hand but also complex calculation of so called Fréchet
derivatives at each iteration step.
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In order to overcome such difficulties, alternative non-iterative
imaging algorithm has suggested, for example, Linear sampling
method [10, 13, 19], MUSIC (MUltiple SIgnal Classification)-type
algorithm [3, 5, 18, 26, 27] and multi-frequency method [24, 25]. It has
shown that these algorithms are fast, effective and robust. Moreover,
they can be easily extended to the multiple inclusions. Unfortunately,
for a successful application of such algorithms, a large amount of
incident fields with various directions and corresponding scattered
fields are required. Therefore, development a non-iterative imaging
algorithm with a small amount of such fields is required.

In this paper, we develop a non-iterative imaging method of
thin dielectric inclusion via the scattered field measured at boundary
induced from a small number of incident field. For that purpose the
topological derivative concept is adopted. Notice that in the field of
shape optimization, a topological derivative is a derivative of a function
of a region with respect to small changes in its topology, such as adding
a small inclusion and so on. For that purpose, we will apply the
asymptotic expansion formula due to the presence of small dielectric
inclusion to express the integral equation of topological derivative and
to design and solve the adjoint problems.

Let us signal that sometimes poor results appeared via non-
iterative method so that they could not guarantee the complete shape
of thin inclusions (see Figures 6, 7 and examples in [5, 18, 20, 26, 27]).
However, once the results are obtained, one could apply them to
the traditional iterative algorithm to retrieve a better shape once an
appropriate cost functional is chosen (see [28] for instance).

This paper structured as follows. Two-dimensional electromag-
netic scattering from a dielectric thin inclusion and asymptotic expan-
sion formula due to the presence of small inclusion is introduced in
Section 2. In Section 3, we derive the topological derivatives by means
of an adjoint technique. In Section 4, we present various numerical
experiments for demonstrating the performance of the proposed algo-
rithm. A short conclusion appears in Section 5.

2. THE DIRECT SCATTERING PROBLEM &
ASYMPTOTIC EXPANSION FORMULA

Let us consider two-dimensional electromagnetic scattering from a thin,
curve-like homogeneous inclusion within a homogeneous domain Ω.
Throughout this paper, we only consider only a dielectric contrast case
and carry out the study in the two-dimensional Transverse Magnetic
(TM) polarization. Assume that this domain Ω contains an inclusion
denoted as Γ which is localized in the neighborhood of a curve σ. That
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Figure 1. Sketch of the thin inclusion Γ with its supporting curve σ.

is,
Γ = {x + ηn(x) : x ∈ σ, η ∈ (−h, h)} , (1)

where the supporting σ is a simple, smooth curve completely embedded
in Ω, n(x) is the unit normal to σ at x, and h is a strictly positive
constant which specifies the thickness of the inclusion (small with
respect to the wavelength), refer to Figure 1.

Assume that every materials are fully characterized by their
dielectric permittivity at a given frequency ω. Let 0 < ε0 < +∞
and 0 < εT < +∞ denote the permittivity of the domain Ω and thin
inclusion Γ, respectively. Then, one can define the piecewise constant
dielectric permittivity

ε̂(x) =

{
ε0 for x ∈ Ω\Γ
εT for x ∈ Γ.

(2)

In order to derive the topological derivative in Section 3, we
need an asymptotic expansion formula due to the existence of small
inclusion. Assume that Ω contains a small inclusion Σ := z+rB, where
r is a small, real positive constant which specifies the magnitude of the
diameter of Σ, B is a bounded, smooth domain (here, we assume that
B is a disk) containing the origin, and z denotes the location such
inclusion. Similarly with the Equation (2), let us define the piecewise
constant dielectric permittivity

ε(x) =

{
ε0 for x ∈ Ω\Σ
ε for x ∈ Σ.

(3)

Let u(x) and v(x) be the time-harmonic total field which satisfies
the Helmholtz equation in the presence of small inclusion Σ:



4u(x) + ω2ε(x)u(x) = 0 in R2

∂u

∂ν
(x) = g(x) on ∂Ω

(4)
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and {
4v(x) + ω2ε(x)v(x) = 0 in R2

v(x) = f(x) on ∂Ω.
(5)

and let u0(x) and v0(x) be the solution of Equations (4) and (5) in the
absence of such inclusion. Then asymptotic expansion formula in the
presence of small inhomogeneity Σ can be written as (see [4])

u(x)− u0(x) = r2ω2(ε− ε0)|B|u0(z)N (x, z) + o(r2) (6)
and

∂v

∂ν
(x)− ∂v0

∂ν
(x) = r2ω2(ε− ε0)|B|u0(z)

∂G(x, z)
∂ν(x)

+ o
(
r2

)
, (7)

where o(r2) is uniform in z ∈ Σ, N and G be the Neumann and
Dirichlet functions, respectively, the solution to




4N (x, y) + ω2ε0N (x, y) = −δ(x, y) in Ω

∂N (x, y)
∂ν(x)

= 0 on ∂Ω

and {
4G(x, y) + ω2ε0G(x, y) = δ(x, y) in Ω

G(x, y) = 0 on ∂Ω.

3. DERIVATION OF TOPOLOGICAL DERIVATIVE

The topological derivative measures the influence of creating a small
inclusion at a certain point inside the domain Ω. Mathematically
speaking, the topological derivative dTJ (z) of a function J (Ω) at a
point z inside Ω can be defined by

J (Ω\Σ) = J (Ω) + ρ(r)dTJ (z) + o(ρ(r)),
where Σ is a small ball(inclusion) of small radius r placed at z and the
function ρ(r) −→ 0 as r −→ 0. See [5, 6, 16, 17, 31] for instance.

Suppose that Ω contains a thin inclusion Γ and let g(l)(x), l =
1, 2, . . . , N , be N given functions denote the boundary condition on
∂Ω. The problem we consider in this paper is to construct an image
of Γ from the boundary measurements u

(l)
Γ (x) for x ∈ ∂Ω, where the

function u
(l)
Γ for l = 1, 2, . . . , N , is the solution to





4u
(l)
Γ (x) + ω2ε̂(x)u(l)

Γ (x) = 0 in Ω

∂u
(l)
Γ

∂ν
(x) = g(l)(x) on ∂Ω,

(8)
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where ε̂(x) is defined in Equation (2). With this, let us construct u
(l)
N

and u
(l)
D as the solutions to the following problems in the absence of

inclusion: 


4u

(l)
D (x) + ω2ε0u

(l)
D (x) = 0 in Ω

u
(l)
D (x) = u

(l)
Γ (x) on ∂Ω

(9)

and 



4u
(l)
N (x) + ω2ε0u

(l)
N (x) = 0 in Ω

∂u
(l)
N

∂ν
(x) = g(l)(x) on ∂Ω,

(10)

respectively. Then we can define the following discrepancy function:

J (Ω):=
1
2

N∑

l=1

∫

∂Ω




∣∣∣∣∣
∂u

(l)
D

∂ν
(x)−g(l)(x)

∣∣∣∣∣

2

+
∣∣∣u(l)

N (x)−u
(l)
Γ (x)

∣∣∣
2


dS(x).

(11)
Now, we can obtain the following result:

Theorem 3.1 Let us denote Ref be the real part of f . Then the
topological derivative dTJ (z) of the discrepancy function J (Ω) satisfies

J (Ω\Σ) = J (Ω) + r2ω2(ε− ε0)|B|dTJ (z) + o(r2),

where

dTJ (z) = Re
N∑

l=1

(
v

(l)
D (z)u(l)

D (z) + v
(l)
N (z)u(l)

N (z)
)

, (12)

and the adjoint states v
(l)
D (z) and v

(l)
N (z) are defined as the solution to





4v
(l)
D (x) + ω2ε0v

(l)
D (x) = 0 in Ω

v
(l)
D (x) =

∂u
(l)
D

∂ν
(x)− g(l)(x) on ∂Ω

(13)

and 



4v
(l)
N (x) + ω2ε0v

(l)
N (x) = 0 in Ω

∂v
(l)
N

∂ν
(x) = u

(l)
N (x)− u

(l)
Γ (x) on ∂Ω.

(14)

Proof. In order to derive the topological derivative, let us create a
small inclusion Σ := z + rB at a certain point z inside the domain Ω
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and denote u
(l)
D,Σ and u

(l)
N,Σ be the solutions of the following problems

in the presence of Σ:


4u

(l)
D,Σ(x) + ω2ε(x)u(l)

D,Σ(x) = 0 in Ω

u
(l)
D,Σ(x) = u

(l)
Γ (x) on ∂Ω

(15)

and 



4u
(l)
N,Σ(x) + ω2ε(x)u(l)

N,Σ(x) = 0 in Ω

∂u
(l)
N,Σ

∂ν
(x) = g(l)(x) on ∂Ω,

(16)

respectively.
Applying equations (6) and (7), we can compute J (Ω\Σ) and

examine the relationship between J (Ω\Σ) and J (Ω) as follows:

J (Ω\Σ)

=
1
2

N∑

l=1

∫

∂Ω




∣∣∣∣∣∣
∂u

(l)
D,Σ

∂ν
(x)− g(l)(x)

∣∣∣∣∣∣

2

+
∣∣∣u(l)

N,Σ(x)− u
(l)
Γ (x)

∣∣∣
2


 dS(x)

=
1
2

N∑

l=1

∫

∂Ω




∣∣∣∣∣
∂u

(l)
D

∂ν
(x)− g(l)(x)

∣∣∣∣∣

2

+
∣∣∣u(l)

N (x)− u
(l)
Γ (x)

∣∣∣
2


 dS(x)

+
N∑

l=1

∫

∂Ω

(
∂u

(l)
D

∂ν
(x)− g(l)(x)

)
∂u

(l)
D,Σ

∂ν
(x)− ∂u

(l)
D

∂ν
(x)


 dS(x)

+
N∑

l=1

∫

∂Ω

(
u

(l)
N (x)− u

(l)
Γ (x)

)(
u

(l)
N,Σ(x)− u

(l)
N (x)

)
dS(x) + o(r2)

=J (Ω) + JD(z) + JN (z) + o
(
r2

)
,

(17)

where

JD(z) =
N∑

l=1

∫

∂Ω

(
∂u

(l)
D

∂ν
(x)−g(l)(x)

)
∂u

(l)
D,Σ

∂ν
(x)− ∂u

(l)
D

∂ν
(x)


dS(x)

and

JN (z) =
N∑

l=1

∫

∂Ω

(
u

(l)
N (x)− u

(l)
Γ (x)

)(
u

(l)
N,Σ(x)− u

(l)
N (x)

)
dS(x).
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Therefore, topological derivative dTJ (z) can be obtained via
evaluation of JD(z) and JN (z).

First, applying asymptotic expansion formula in Equation (7) and
boundary condition in Equation (13), JD(z) can be written

JD(z) =
N∑

l=1

∫

∂Ω

(
∂u

(l)
D

∂ν
(x)−g(l)(x)

)
∂u

(l)
D,Σ

∂ν
(x)− ∂u

(l)
D

∂ν
(x)


dS(x)

=
N∑

l=1

∫

∂Ω
v

(l)
D (x)


∂u

(l)
D,Σ

∂ν
(x)− ∂u

(l)
D

∂ν
(x)


 dS(x)

= r2ω2(ε− ε0)|B|
N∑

l=1

∫

∂Ω
v

(l)
D (x)u(l)

D (z)
∂G(x, z)
∂ν(x)

dS(x).

Then applying integration by parts yields
∫

∂Ω
v

(l)
D (x)u(l)

D (z)
∂G(x, z)
∂ν(x)

dS(x)

=
∫

Ω

[
v

(l)
D (x)u(l)

D (z)4G(x, z) +∇v
(l)
D (x) ·

(
u

(l)
D (z)∇G(x, z)

)]
dx

=
∫

Ω

[
v

(l)
D (x)u(l)

D (z)4G(x, z) + v
(l)
D (x)u(l)

D (z)ω2ε0G(x, z)
]

dx

−
∫

Ω

[
4v

(l)
D (x)u(l)

D (z)G(x, z) + v
(l)
D (x)u(l)

D (z)ω2ε0G(x, z)
]

dx

=
∫

Ω

[
v

(l)
D (x)u(l)

D (z) (4G(x, z) + ω2ε0G(x, z))
]

dx

−
∫

Ω

[(
4v

(l)
D (x) + ω2ε0v

(l)
D (x)

)
u

(l)
D (z)G(x, z)

]
dx

=v
(l)
D (z)u(l)

D (z) (18)

for all l = 1, 2, . . . , N . Therefore, we can obtain

JD(z) = r2ω2(ε− ε0)|B|
N∑

l=1

v
(l)
D (z)u(l)

D (z). (19)

Next, applying asymptotic expansion formula in Equation (6) and
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boundary condition in Equation (14) yields

JN (z) =
N∑

l=1

∫

∂Ω

(
u

(l)
N (x)− u

(l)
Γ (x)

)(
u

(l)
N,Σ(x)− u

(l)
N (x)

)
dS(x)

=
N∑

l=1

∫

∂Ω

∂v
(l)
N

∂ν
(x)

(
u

(l)
N,Σ(x)− u

(l)
N (x)

)
dS(x)

= r2ω2(ε− ε0)|B|
N∑

l=1

∫

∂Ω

∂v
(l)
N

∂ν
(x)u(l)

N (z)N (x, z)dS(x).

Then integration by parts yields
∫

∂Ω

∂v
(l)
N

∂ν
(x)u(l)

N (z)N (x, z)dS(x)

=
∫

Ω

[
4v

(l)
N (x)u(l)

N (z)N (x, z) +∇v
(l)
N (x) · u(l)

N (z)∇N (x, z)
]

dx

=
∫

Ω

[
4v

(l)
N (x)u(l)

N (z)N (x, z) + ω2ε0v
(l)
N (x)u(l)

N (z)N (x, z)
]

dx

−
∫

Ω

[
v

(l)
N (x)u(l)

N (z)4N (x, z) + ω2ε0v
(l)
N (x)u(l)

N (z)N (x, z)
]

dx

=
∫

Ω

[(
4v

(l)
N (x) + ω2ε0v

(l)
N (x)

)
u

(l)
N (z)N (x, z)

]
dx

−
∫

Ω

[
v

(l)
N (x)u(l)

N (z) (4N (x, z) + ω2ε0N (x, z))
]

dx

=v
(l)
N (z)u(l)

N (z). (20)
for all l = 1, 2, . . . , N . Therefore, we can obtain

JN (z) = r2ω2(ε− ε0)|B|
N∑

l=1

v
(l)
N (z)u(l)

N (z). (21)

Finally, by taking real parts of sum of Equations (19) and (21), we can
obtain Equation (12).

The points where the topological derivative is the most negative
are expected to be approximately on σ so that this would yields a shape
of Γ. Roughly speaking, inserting small ball in the most negative
gradient regions minimizes the discrepancy between the boundary
measurements u

(l)
Γ and the solutions in the presence of these balls with

the Neumann data g(l) for l = 1, 2, . . . , N . It is worth mentioning that
the negative gradient regions are obtained in only one iteration so that
this method will be faster than the traditional iterative method.
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4. NUMERICAL EXPERIMENTS

In this section, we present results of numerical simulations using the
evaluation of topological derivative dTJ (z) we derived in the previous
subsections to image thin dielectric inclusions. For that purpose, we
choose the homogeneous domain Ω as a unit circle centered at the
origin in R2 and three thin inclusions Γj are chosen for illustration:

Γj = {x + ηn(x) : x ∈ σj , η ∈ (−h, h)} ,

with symmetric, non-symmetric and oscillating supporting curves σ1,
σ2 and σ3, respectively, represented as

σ1 =
{
(s− 0.2,−0.5s2 + 0.5) : s ∈ [−0.5, 0.5]

}

σ2 =
{
(s + 0.2, s3 + s2 − 0.6) : s ∈ [−0.5, 0.5]

}

σ3 =
{
(s, 0.5s2 + 0.1 sin(3π(z + 0.7))) : s ∈ [−0.7, 0.7]

}
.

(22)

and we denote εj be the permittivities of Γj . The thickness h of thin
inclusions Γj is set to 0.02 and permittivity ε0 of domain Ω is chosen
as 1. Since ε0 are set to unity, the applied frequency reads as ω = 2π

λ ,
at wavelength λ, i.e., the boundary conditions in Equations (8) and
(10) can be read as

g(l)(x) :=
∂u

∂ν
(x) =

∂eiωθl·x

∂ν(x)
= iωθl · ν(x)eiωθl·x

for every x ∈ ∂Ω if we consider the plane wave illumination. We choose
N = 4 different incident directions

θl :=
(

cos
2lπ

N
, sin

2lπ

N

)
for l = 1, 2, . . . , N,

 −1  −0.5 0 0.5 1

 −1

−0.5

0

0.5

1

Ω

2

Γ 1

Γ 

Figure 2. Sketch of the test configuration.
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and have the measured data at M = 40 equidistant points xm on ∂Ω
(see Figure 2),

xm :=
(

cos
2mπ

M
, sin

2mπ

M

)
for m = 1, 2, . . . , M.

Let us emphasize that the forward problems in Equations (8),
(9), (10), (13) and (14) are solved by Finite Element Method (FEM)
in order to avoid the inverse crime. Alternatively, one can employ
an asymptotic formulation involving the solution of a second-kind
Fredholm integral equation [23] and asymptotic expansion formula [7]
along the supporting curve. See [27] for a detailed discussion of
generating data and corresponding results.

For the first example, let us consider the imaging of Γ1 with
ε1 = 5. Figure 3 is the plot of values of dTJ (z) for all z ∈ Ω at
operating wavelength λ = 0.5. In this example, one can easily notice
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Figure 3. Map of dTJ (z) for λ = 0.5, without noise. White colored
line is the Γ1.
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that the points where the topological derivative is the most negative
value appears in the neighborhood of σ1 so that and it provides a good
initial guess.

Next, Figure 4 shows the plot of values of dTJ (z) when the thin
inclusion is Γ2 with ε2 = 5 and operating wavelength λ = 0.5. In
harmony with the previous example, good image of Γ2 has appeared.

Let us apply this algorithm to an oscillating thin inclusion Γ3.
Typical result is illustrated in Figure 5 with ε3 = 5 and operating
wavelength λ = 0.5. By comparing with the result in [26, 27] the result
is coarse so that an implementation is expected.

Both mathematical setting, derivation of topological derivative
and numerical analysis could be extended in rather straightforward
fashion to the case of multiple inclusions with same thickness h.
Detailed derivation will not be considered herein, only examples are
illustrated. For that purpose, let us consider the imaging of multiple
inclusions ΓMulti = Γ1 ∪Γ2 in Figures 6 and 7. By comparing with the
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Figure 5. Map of dTJ (z) for λ = 0.5, without noise. White colored
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single inclusion cases, refer to Figures 3 and 4, we can easily recognize
the existence of such inclusions. It is interesting to observe that if an
inclusion Γ2 has a much smaller value of permittivity than the other Γ1,
say ε1 = 10 and ε2 = 5, this inclusion does not significantly affect the
scattered field so that it appeared with much smaller magnitude than
the other one, refer to Figure 7. As we mentioned in the introduction,
although obtained results are poor, such results of low computational
cost could provide initial guesses of the traditional Newton-type based
algorithm or of a level-set evolution [1, 16, 28, 29].

In order to show the robustness of proposed algorithm, we added
a white Gaussian noise with 20 dB signal-to-noise ratio (SNR) to the
measured boundary data u

(l)
Γ (x) in Equation (8). Figures 8 and 9

illustrate the results when we add Gaussian noise for Γ2 and ΓMulti. By
comparing with Figures 4 and 7, we can notice that proposed method
is robust even under the presence of noise.
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Figure 7. Map of dTJ (z) for λ = 0.5, without noise. White colored
line is the ΓMulti with different permittivities.
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Figure 8. Map of dTJ (z) for λ = 0.5 in the presence of random noise
when the thin inclusion is Γ2.
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Figure 9. Map of dTJ (z) for λ = 0.5 in the presence of random noise
when the thin inclusion is ΓMulti with different permittivities.

5. CONCLUSION

Based on the topological derivative concept, a non-iterative algorithm
has been investigated for imaging thin dielectric curve-like inclusions
embedded in a homogeneous domain Ω. Results show that this
approach is fast, effective and stable so that such results of low
computational cost could provide initial guesses of the traditional
Newton-type based algorithm or of a level-set evolution [1, 16, 28].

Although, we have considered dielectric case only, the analysis
could be extended for a purely magnetic contrast between inclusions
and embedding domain, and combination cases so that it can be carry
out the study in the Transverse Electric (TE) polarization. Recently,
the asymptotic expansion formula due to the presence of small perfectly
conducting crack with Dirichlet boundary condition for imaging of
extended one is developed. Extension of such algorithm for Neumann
boundary condition case is also an interesting subject.

In this paper, we considered the imaging in the presence of random
noise. Development of a fast and robust imaging algorithm in the
presence of random inclusions will be a forthcoming work. Finally, we
have been considering a two-dimensional problem. The strategy which
is suggested, e.g., mathematical treatment of the asymptotic formula,
imaging algorithm, etc., could be extended to the three-dimensional
problem.
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