Vol. 111
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-09
Experimental Dynamical Evolution of the Brillouin Precursor for Broadband Wireless Communication through Vegetation
By
Progress In Electromagnetics Research, Vol. 111, 291-309, 2011
Abstract
In this paper, we report experimental results on detecting and analyzing the Brillouin precursor through vegetation at frequencies from 100MHz to 3GHz. An experimental method to collect data is reported. The outcomes in terms of energy and time-spreading are presented using modulated rectangular and Gaussian pulses, as well as a sequence of rectangular pulses. Using field-collected data, this study shows the estimated dynamical evolution of the Brillouin precursor fields for wideband wireless systems, such as those represented by IEEE 802.16. The advantages of Brillouin precursors in terms of power spectrum density and bit energy are discussed. Complex relative permittivity is extracted from the experimental data and is used in theoretical formulation to analyze dispersive propagation for any kind of input waveform. Finally, a near-optimal pulse is proposed to achieve maximum propagation distance and/or signal-to-noise ratio for the transmission of bit stream sequences through vegetation.
Citation
Ana Vazquez Alejos, Muhammad Dawood, and Luis Medina, "Experimental Dynamical Evolution of the Brillouin Precursor for Broadband Wireless Communication through Vegetation," Progress In Electromagnetics Research, Vol. 111, 291-309, 2011.
doi:10.2528/PIER10100706
References

1. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002

2. Hillion, P., "Electromagnetic pulse propagation in dispersive media," Progress In Electromagnetics Research, Vol. 35, 299-314, 2002.
doi:10.2528/PIER02021703

3. Oughstun, K. E. and G. C. Sherman, Electromagnetic and Optical Pulse Propagation, Vol. 2, Springer-Verlag, Berlin, Germany, 2009.

4. Oughstun, K. E., "Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1582-1590, 2005.
doi:10.1109/TAP.2005.846452

5. Pleshko, P. and I. Palózc, "Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain," Physical Review Letters, Vol. 22, No. 22, June 1969.
doi:10.1103/PhysRevLett.22.1201

6. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
doi:10.2528/PIER07071905

7. Mohammed, H., M. Dawood, and A. Alejos, "Experimental detection of brillouin precursors through tap water at microwave frequencies," in review for IET Electronics Letters, July 2010.

8. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Wiley, 2004.
doi:10.1002/0470020466

9. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805

10. Alejos, A. V., M. Dawood, and H. U. R. Mohammed, "Analysis of Brillouin precursor propagation through foliage for digital sequences of pulses," IEEE Geosci. Remote Sensing Letters, Vol. 8, No. 1, 59-63, January 2011.
doi:10.1109/LGRS.2010.2051213

11. Heidari, A., M. Neshat, D. Saeedkia, and S. Safavi-Naeini, "Signal recovery in pulsed terahertz integrated circuits," Progress In Electromagnetics Research, Vol. 107, 269-292, 2010.
doi:10.2528/PIER10031810

12. Alejos, A. V., M. G. Sanchez, and I. Cuiñas, "Measurement and analysis of propagation mechanisms at 40 GHz: Viability of site shielding forced by obstacles," IEEE Transactions on Vehicular Technology, Vol. 58, No. 2, 3369-3380, 2008.
doi:10.1109/TVT.2008.920052

13. Correia, L. M. and P. O. Françês, "Transmission and isolation of signals in buildings at 60 GHz," Int. Symp. on Personal, Indoor and Mobile Communications, (PIMRC), Toronto, Canada, September 1995.

14. Chukhlantsev, A., A. Shutko, S. Golovachev, and A. Chukhlantsev, "Conductivity of leaves and branches and its relation to the spectral dependence of attenuation by forests in meter and decimeter band," Intern. Geosci. Remote Sensing Symposium, Vol. 2, 1103-1105, 2003.

15. Luebbers, R., T. Uno, and K. Kumagai, "Comments on `Pulse propagation in a linear, causally dispersive medium'," Proceedings of the IEEE, Vol. 81, No. 4, 1993.
doi:10.1109/5.219349

16. Fung, A. K. and F. T. Ulaby, "A scatter model for leafy vegetation," IEEE Trans. Geosci. Electron., Vol. 16, 281-286, 1978.
doi:10.1109/TGE.1978.294585

17. El Rayes, M. A. and F. T. Ulaby, "Microwave dielectric spectrum of vegetation, part II: Dual dispersion model," IEEE Trans. Geoscience Remote Sensing, Vol. 25, 550-557, Sep. 1987.

18. Brown, G. S. and W. J. Curry, "A theory and model for wave propagation through foliage," Radio Science, Vol. 17, No. 5, 1027-1036, 1982.
doi:10.1029/RS017i005p01027

19. Maetzler, C., "Microwave (1-100 GHz) dielectric model of leaves," IEEE Trans. Geosci. Remote Sensing, Vol. 33, 947-949, 1994.
doi:10.1109/36.298024

20. Pearce, C., "The permittivity of two phase mixtures," Brit. J. Applied Physics, Vol. 61, 358-361, 1955.
doi:10.1088/0508-3443/6/10/306

21. Wei, B., S.-Q. Zhang, Y.-H. Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.
doi:10.2528/PIERB09090306

22. Oughstun, K. E., "On the use & application of precursor wave-forms," 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting, (ANTEM/URSI), Banff, Alberta, Canada, February 15-18, 2009.

23. Li, Y. and H. Ling, "Numerical modeling and mechanism analysis of VHF wave propagation in forested environments using the equivalent slab model," Progress In Electromagnetics Research, Vol. 91, 17-34, 2009.
doi:10.2528/PIER09012306

24. Capineri, L., D. J. Daniels, P. Falorni, O. L. Lopera, and C. G. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803