Vol. 111
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-17
A Study of an Inversion Model for Sea Ice Thickness Retrieval in Ross Island, Antarctica
By
Progress In Electromagnetics Research, Vol. 111, 381-406, 2011
Abstract
In this study, an inverse microwave scattering model for sea ice has been developed for the purpose of sea ice thickness retrieval using radar backscatter data. The model is loosely based on the Radiative-Transfer-Thermodynamic Inverse Model for Sea Ice Thickness Retrieval from Time-Series Scattering Data. The developed inverse model is a combination of the Radiative Transfer Theory with Dense Medium Phase and Amplitude Correction Theory (RT-DMPACT) forward model and the Levenberg-Marquardt Optimization algorithm. Using input data from ground truth measurements carried out in Ross Island, Antarctica, together with radar backscatter data extracted from purchased satellite images, the sea ice thickness of an area is estimated using the inverse model developed. The estimated sea ice thickness is then compared with the ground truth measurement data to verify its accuracy. The results have shown good promise, with successful estimation of the sea ice thickness within ±0.15 m of the actual measurement. A theoretical analysis has also revealed that the model faces difficulty once the sea ice thickness exceeds 1.7m. This can be considered in the future development and improvement of the model.
Citation
Yu Jen Lee, Wee Keong Lim, and Hong-Tat Ewe, "A Study of an Inversion Model for Sea Ice Thickness Retrieval in Ross Island, Antarctica," Progress In Electromagnetics Research, Vol. 111, 381-406, 2011.
doi:10.2528/PIER10100411
References

1. Golden, K. M., M. Cheney, K. H. Ding, A. K. Fung, T. C. Grenfell, D. Isaacson, J. A. Kong, S. V. Nghiem, J. Sylvester, and D. P. Winebrenner, "Forward electromagnetic scattering models for sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1655-1674, 1998.
doi:10.1109/36.718637

2. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
doi:10.2528/PIER09071413

3. Golden, K. M., D. Borup, M. Cheney, E. Cherkaeva, M. S. Dawson, K. H. Ding, A. K. Fung, D. Isaacson, S. A. Johnson, A. K. Jordan, J. A. Kong, R. Kwok, S. V. Nghiem, R. G. Onstott, J. Sylvester, D. P. Winebrenner, and I. H. H. Zabel, "Inverse electromagnetic scattering models for sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1675-1704, 1998.
doi:10.1109/36.718638

4. Veysoglu, M. E., H. T. Ewe, A. K. Jordan, R. T. Shin, and J. A. Kong, "Inversion algorithms for remote sensing of sea ice," International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 1: Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, 626-628, 1994.

5. Shih, S. E., K. H. Ding, S. V. Nghiem, C. C. Hsu, J. A. Kong, and A. K. Jordan, "Thickness retrieval using time series electromagnetic measurements of laboratory grown saline ice," International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 2: Remote Sensing for a Sustainable Future, 1208-1210, 1996.

6. Shih, S. E., K. H. Ding, S. V. Nghiem, C. C. Hsu, J. A. Kong, and A. K. Jordan, "Saline ice thickness retrieval using time series c-band polarimetric radar measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1589-1598, 1998.
doi:10.1109/36.718862

7. Kwok, R., S. V. Nghiem, S. H. Yueh, and D. D. Huynh, "Retrieval of thin ice thickness from multifrequency polarimetric SAR data," Remote Sensing of Environment, Vol. 51, 461-474, 1995.

8. Fung, A. K. and R. G. Onstott, "Modeling of ice thickness effect and its application to data interpretation," International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 2: Remote Sensing for a Sustainable Future, 1202-1204, 1996.

9. Pfaffling, A., C. Haas, and J. E. Reid, "Empirical inversion of hem data for sea ice thickness mapping," Extended Abstracts, 10th European Meeting of Environmental and Engineering Geophysics (EAGE's Near Surface 2004), A037, Utrecht, The Netherlands, 2004.

10. Hendricks, S., C. Haas, S. Gobell, and J. Haapala, "Laser and radar (LaRa) surface elevation retrieval and ice thickness measurements in the baltic sea," European Geosciences Union General Assembly, poster paper, Vienna, April 2006.

11. Ji, Y., J. Zhang, and J. Meng, "ABMR ice thickness model and its applications to bohai sea in China," Progress In Electromagnetics Research, Vol. 76, 183-194, 2007.
doi:10.2528/PIER07071003

12. Nghiem, S. V., R. Kwok, S. H. Yueh, A. J. Gow, D. K. Perovich, J. A. Kong, and C. C. Hsu, "Evolution in polarimetric signatures of thin saline ice under constant growth," Radio Science, Vol. 32, No. 1, 127-151, 1997.
doi:10.1029/96RS03051

13. Golden, K. M., M. Cheney, K. H. Ding, A. K. Fung, T. C. Grenfell, D. Isaacson, J. A. Kong, S. V. Nghiem, J. Sylvester, and D. P. Winebrenner, "Forward electromagnetic scattering models for sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1655-1674, 1998.
doi:10.1109/36.718637

14. Shih, S. E., K. H. Ding, S. V. Nghiem, C. C. Hsu, J. A. Kong, and A. K. Jordan, "Saline ice thickness retrieval using time series C-band polarimetric radar measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1589-1598, 1998.
doi:10.1109/36.718862

15. Albert, M. D., T. E. Tan, H. T. Ewe, and H. T. Chuah, "A theoretical and measurement study of sea ice and ice shelf in antarctica as electrically dense media," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 14, 1973-1981, 2005.
doi:10.1163/156939305775570639

16. Chandrasekhar, S., Radiative Transfer, Dover, New York, 1960.

17. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive: Vol. 1. Microwave Remote Sensing Fundamentals and Radiometry, Addison-Wesley Publishing Company, Massachusetts, 1981.

18. Chuah, H. T., S. Tjuatja, A. K. Fung, and J. W. Bredow, "A phase matrix for a dense discrete random medium: Evaluation of volume scattering coefficient," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, 1137-1143, 1996.
doi:10.1109/36.536529

19. Fung, A. K. and H. J. Eom, "A study of backscattering and emission from closely packed inhomogeneous media," IEEE Transactions on Geoscience and Remote Sensing, Vol. 23, No. 5, 761-767, 1985.
doi:10.1109/TGRS.1985.289395

20. Ewe, H. T. and H. T. Chuah, "An analysis of the scattering of discrete scatterers in an electrically dense medium," 1998 IEEE International Geoscience and Remote Sensing Symposium Proceedings (IGARSS'98), Vol. 5, 2378-2380, July 6-10, 1998.

21. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, 1994.

22. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive: Vol. 3, From Theory to Applications, Addison-Wesley Publishing Company, Massachusetts, 1986.

23. Fung, A. K., Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 2, 356-369, 1992.
doi:10.1109/36.134085

24. Ewe, H. T., H. T. Chuah, and A. K. Fung, "A backscatter model for a dense discrete medium: Analysis and numerical results," Remote Sensing of Environment, Vol. 65, No. 2, 195-203, 1998.
doi:10.1016/S0034-4257(98)00027-3

25. Madsen, K., H. B. Nielsen, and O. Tingleff, Methods for Non-linear Least Squares Problems, Lecture Notes, 2nd Edition, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Lyngby, 2004.

26. Gill, P. E. and W. Murray, "Algorithms for the solution of the nonlinear least-squares problem," Journal of Society for Industrial and Applied Mathematics, Vol. 15, No. 5, 977-992, 1978.

27. Marquardt, D. W., "An algorithm for least-squares estimation of non-linear parameters," Journal of Society for Industrial and Applied Mathematics, Vol. 11, No. 2, 431-441, 1963.
doi:10.1137/0111030

28. Winebrenner, D. P., L. Tsang, B. H. Wen, and R. West, "Sea ice characterization measurements needed for the testing of microwave remote sensing models," IEEE Journal of Oceanic Engineering, Vol. 14, No. 2, 149-158, 1989.
doi:10.1109/48.16828

29. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive: Vol. 2, Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley Publishing Company, Massachusetts, 1982.