Vol. 109
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-03
Semi-Analytical Solutions of 2-d Homogeneous Helmholtz Equation by the Method of Connected Local Fields
By
Progress In Electromagnetics Research, Vol. 109, 399-424, 2010
Abstract
The frequency-domain finite-difference (FD-FD) methods have been successfully used to obtain numerical solutions of two-dimensional (2-D) Helmholtz equation. The standard second-order accurate FD-FD scheme is known to produce unwanted numerical spatial and temporal dispersions when the sampling is inadequate. Recently compact higher-order accurate FD-FD methods have been proposed to reduce the spatial sampling density. We present a semi-analytical solution of 2-D homogeneous Helmholtz equation by connecting overlapping square patches of local fields where each patch is expanded in a set of Fourier-Bessel (FB) series. These local FB coefficients are related to total eight points, four on the sides and four on the corners, on the square patch. The local field expansion (LFE) analysis leads to an improved, compact FD-like, nine-point stencil for the 2-D homogeneous Helmholtz equation. We show that LFE formulation possesses superior numerical properties of being low dispersive and nearly isotropic because this method of connecting local fields merely ties these overlapping EM field patches already satisfy the Helmholtz equation.
Citation
Hung-Wen Chang, and Sin-Yuan Mu, "Semi-Analytical Solutions of 2-d Homogeneous Helmholtz Equation by the Method of Connected Local Fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010.
doi:10.2528/PIER10092807
References

1. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguides I: Uniform regions and dielectric interfaces," Journal of Lightwave Technology, Vol. 20, No. 7, 1210-1218, 2002.
doi:10.1109/JLT.2002.800361

2. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners," Journal of Lightwave Technology, Vol. 20, No. 7, 1219-1231, 2002.
doi:10.1109/JLT.2002.800371

3. Li, L.-Y. and J.-F. Mao, "An improved compact 2-D finite-difference frequency-domain method for guided wave structures," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 12, 520-522, 2003.
doi:10.1109/LMWC.2003.819956

4. Yu, C.-P. and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Optics Express, Vol. 12, 1397-1408, 2004.
doi:10.1364/OPEX.12.001397

5. Chang, H. W. and W. C. Cheng, "Analysis of dielectric waveguide termination with tilted facets by analytic continuity method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1653-1662, 2007.

6. Zhao, W., H. W. Deng, and Y. J. Zhao, "Application of 4-component compact 2-D FDFD method in analysis of lossy circular metal waveguide," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 18-18, 2297-2308, 2008.
doi:10.1163/156939308787543930

7. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid FD mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

8. Chang, H.-W., Y.-H. Wu and W.-C. Cheng, "Hybrid FD-FD analysis of crossing waveguides by exploiting both the plus and the cross structural symmetry," Progress In Electromagnetics Research, Vol. 103, 217-240, 2010.
doi:10.2528/PIER10030202

9. Chang, H.-W. and Y.-H. Wu, "Analysis of perpendicular crossing dielectric waveguides with various typical index contrasts and intersection profiles," Progress In Electromagnetics Research, Vol. 108, 323-341, 2010.
doi:10.2528/PIER10081008

10. Mittra, R. and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave and Guided Wave Letter, Vol. 5, No. 3, 84-86, 1995.
doi:10.1109/75.366461

11. Zheng, S., W.-Y. Tam, D.-B. Ge, and J.-D. Xu, "Uniaxial PML absorbing boundary condition for truncating the boundary of DNG metamaterials," Progress In Electromagnetics Research Letters, Vol. 8, 125-134, 2009.
doi:10.2528/PIERL09030901

12. Chang, H.-W., W.-C. Cheng, and S.-M. Lu, "Layer-mode transparent boundary condition for the hybrid FD-FD method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606

13. Jo, C.-H., C. Shin, and J.-H. Suh, "An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator," Geophysics, Vol. 61, No. 2, 529-537, 1996.
doi:10.1190/1.1443979

14. Singer, I. and E. Turkel, "High-order finite difference method for the Helmholtz equation," Computer Methods in Applied Mechanics and Engineering, Vol. 163, 343-358, 1998.
doi:10.1016/S0045-7825(98)00023-1

15. Singer, I. and E. Turkel, "Sixth order accurate finite difference schemes for the Helmholtz equation," Journal of Computational Acoustics, Vol. 14, 339-351, 2006.
doi:10.1142/S0218396X06003050

16. Nabavi, M., M. H. K. Siddiqui, and J. Dargahi, "A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation," Journal of Sound and Vibration, Vol. 307, 972-982, 2007.
doi:10.1016/j.jsv.2007.06.070

17. Sutmann, G., "Compact finite difference schemes of sixth order for the Helmholtz equation," Journal of Computational and Applied Mathematics, Vol. 203, 15-31, 2007.
doi:10.1016/j.cam.2006.03.008

18. Smith, G. D., Numerical Solution of Partial Differential Equations, Finite Difference Methods, 3 Ed., ISBN 19 859650 2, Glarendon Press, Oxford, 1985.

19. Hall, C. A. and T. A. Porsching, Numerical Analysis of Partial Differential Equations, 2 Ed., ISBN 9780136265573, Prentice Hall, Englewood Cliffs, NJ 07632, 1990.

20. Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations, 2 Ed., ISBN 0-89871-567-9, Siam, 2004.
doi:10.1137/1.9780898717938

21. Chang, H.-W. and S.-Y. Mu, "Novel nine-point FD coefficients for the two-dimensional Helmholtz equation," Cross Strait Tri-Regional Radio Science and Wireless Technology Conference, Hanan, China, 2010.

22. Nehrbass, J. W., J. O. Jevti'c, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Trans. on Antennas and Propagation, Vol. 46, No. 8, 1194-1201, 1998.
doi:10.1109/8.718575

23. Burden, R. L. and J. D. Faires, Numerical Analysis, Brooks/Cole, Pacific Grove, CA, 2001.

24. Lehmann, T. M., C. Gonner, and K. Spitzer, "Survey: Interpolation methods in medical image processing," IEEE Transactions on Medical Imaging, Vol. 18, No. 11, 1049-1075, 1999.
doi:10.1109/42.816070

25. Elsherbeni, A. and V. Demir, The Finite-difference Time-domain Method for Electromagnetics with MATLAB Simulations, ISBN 9789746521048, SciTech Pub., Raleigh, NC 27615, 2009.

26. Ishimaru, A., Electromagnetic Propagation, Radiation, and Scattering, Prentice Hall, Englewood Cliffs, N.J., 1991.

27. Saleh, B. E. A. and M. C. Teich, Fundamental of Photonics, John Wiley & Son, New York, 1991.
doi:10.1002/0471213748

28. Chang, H.-W., Y.-H. Wu, S.-M. Lu, W.-C. Cheng, and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation --- Numerical investigation," Progress In Electromagnetics Research, Vol. 97, 159-176, 2009.
doi:10.2528/PIER09091402

29. Chang, H.-W. and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation --- Mathematical and numerical formulations," Progress In Electromagnetics Research, Vol. 78, 329-347, 2008.
doi:10.2528/PIER07091002

30. Reiter, J. M. and F. Arndt, "Rigorous analysis of arbitrarily shaped H- and E-plane discontinuities in rectangular waveguides by a full-wave boundary contour mode-matching method," IEEE Trans. on Microwave Theory and Techniques, Vol. 43, No. 6, 796-801, 1995.
doi:10.1109/22.375226

31. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid FD mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

32. Mohammad, R. Z., K. C. Donepudi, J.-M. Jin, and W. C. Chew, "Efficient time-domain and frequency-domain finite-element solution of Maxwell's equations using spectral Lanczos decomposition method," IEEE Trans. on Microwave Theory and Techniques, Vol. 46, No. 8, 1141-1149, 1998.
doi:10.1109/22.704957

33. Fan, Z., D.-Z. Ding, and R.-S. Chen, "The efficient analysis of electromagnetic scattering from composite structures using hybrid CFIE-IEFIE," Progress In Electromagnetics Research B, Vol. 10, 131-143, 2009.

34. Chiou, Y. P., Y. C. Chiang, and H. C. Chang, "Improved three-point formulae considering the interface conditions in the finite-difference analysis of step-index optical devices," Journal of Lightwave Technology, Vol. 18, No. 2, 243-251, 2000.
doi:10.1109/50.822799