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Abstract—The frequency-domain finite-difference (FD-FD) methods
have been successfully used to obtain numerical solutions of the two-
dimensional (2-D) Helmholtz equation. The standard second-order
accurate FD-FD scheme is known to produce unwanted numerical
spatial and temporal dispersions when the sampling is inadequate.
Recently compact higher-order accurate FD-FD methods have been
proposed to reduce the spatial sampling density. We present a semi-
analytical solution of the 2-D homogeneous Helmholtz equation by
connecting overlapping square patches of local fields where each patch
is expanded in a set of Fourier-Bessel (FB) series. These local FB
coefficients correspond to a total of eight points, four on the sides and
four on the corners of the square patch. The local field expansion (LFE)
analysis leads to an improved compact nine-point FD-FD stencil for the
2-D homogeneous Helmholtz equation. We show that LFE formulation
possesses superior numerical properties of being less dispersive and
nearly isotropic because this method of connecting local fields merely
ties these overlapping EM field patches which already satisfy the
Helmholtz equation.

1. INTRODUCTION

In recent years hybrid FD-FD methods have been successfully applied
to study many time-harmonic electromagnetic problems and even
complex dielectric waveguide devices [1–9]. When combined with
effective transparent boundary conditions such as the PML [10, 11]
and the recently developed LM-TBC method [12], the hybrid FD-
FD method can be quite computationally efficient for certain passive
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optoelectronic devices. The drawback of the FD-FD method is that
one must solve for the resulting large sparse linear equation. Currently,
no robust iterative linear equation solutions exist for the discretized
FD-FD Helmholtz equation. As a result, FD-FD methods are rarely
used for 3D applications. Under normal circumstances, the standard
second-order FD-FD method requires at least 10 points per wavelength
to discretize the Helmholtz equation in order to minimize unwanted
numerical dispersion. Currently, high-order finite difference formulae
are being developed [13–17] to reduce FD discretization density. First,
a new approach based on 2-D scalar wave extrapolation leads to nine-
point coefficients [13] for the FD-FD method. The illustration of
the nine-point stencil is given in Fig. 1. The new formulation is
derived from optimizing linear combination coefficients of two sets of
standard five-point FD coefficients, one along the z-x axis and the other
along the z + x and x − z axis. Immediately, we see that numerical
anisotropy will be reduced with this new nine-point scheme covering
eight propagating directions instead of the previous four. Furthermore,
instead of using fixed coefficients for the Laplace operator, we can
adjust and fine-tune the nine-point stencil for each given frequency
to reduce temporal dispersion To lower the sampling density at high
frequencies, there are also approaches based on fourth and sixth-order
approximation of the 2D Helmholtz with an inhomogeneous source [14–
17]. The advantages of these methods are that the frequency-
dependent FD stencils are compact i.e., they do not involve points other
than four side points and four corner points. Hence, direct inversion
of the matrix equation from using a compact nine point stencil costs
no more than those from using a standard five point stencil.
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Figure 1. Compact 9-point array of grids consisting of the
centered point uc, four side points ur, uu, ul, ud and four corner points
une, unw, use, usw.
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2. SUMMARY OF THE FD-FD METHODS

Since our method is related to existing FD-FD methods we shall briefly
summarize the main results of various methods. Interested readers may
also consult many fine textbooks [18–20] for additional information.

2.1. 1D Homogeneous Case

The 1-D homogeneous Helmholtz equation with z as the independent
variable is given below

(
d2

dz2
+ k2

)
u(z) = 0. (1)

Here, the constant k is the wavenumber, k = 2π/λ where λ is the
wavelength. Suppose that the unknown fields {ui} , are evaluated at
zi = i ·∆z, for i = . . . ,−1, 0, 1, . . . . We may approximate the second
derivative of u(z) by a second-order accurate finite-difference. Thus,

d2

dz2
u(z) ∼= 1

(∆z)2
[u(z −∆z)− 2u(z) + u(z + ∆z)] . (2)

This will lead to the following 1-D FD equation for a given point u0:

u0 =
1

2− (k∆z)2
u−1 +

1
2− (k∆z)2

u1. (FD2-3) (3)

2.2. Classical Second-order Accurate 2D FD-FD
Formulation

Referring to Fig. 1, the classical second-order accurate, five-point FD-
FD stencil for this equation at point uc is given by

uc =
ur + uu + ul + ud

4− k2∆2
. (FD2-5) (4)

Here ∆ = ∆x = ∆z. Points ur, uu, ul and ud are side points of uc

located on the right, left, top (up) and bottom (down). Eq. (4) is
denoted as FD2-5 where the fist digit is the order of accuracy and the
second digit stands for total points involved in the given equation.
Eq. (4) is known to be spatially dispersive in that the effective
numerical wavenumber depends on the direction of propagation.
Normally more than ten points per wavelength (typically fifteen to
twenty) are needed to avoid excessive numerical dispersion. To
simulate an integrated 2D optical device of several tens of wavelengths
in each dimension requires significant memory and an up-to-date CPU.
It is interesting to note that spatial dispersive can be reduced if one
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carefully combines two standard five-point FD stencils, one along the
x-z coordinates and another one along the rotated 45 degree x′-z′
coordinates (using the corner points une, unw, use and usw.)

(
4− k2∆2

)
uc = (ur + uu + ul + ud) , (FD2-5+) (5)(

4− 2k2∆2
)
uc = (une + unw + use + usw) . (FD2-5X) (6)

Here une, unw, usw and use represent the north-eastern, north-western,
south-western and south-eastern corner points to uc. The weighted
(four to one ratio) average of Eq. (5) and Eq. (6) leads the following
nine-point FD stencil:

uc =
(2/3) (ur + uu + ul + ud) + (1/6) (une + unw + usw + use)

(10/3− k2∆2)
.

(FD2-9) (7)

Eq. 7 (FD2-9) uses a 9-point stencil. As we expected, it reduces
the numerical spatial dispersion. However, it does very little (see
Section 4.2) for improving the temporal dispersion. As a result, most
existing FD-FD applications adopt the FD2-5 formulation.

Currently, sixth-order accurate compact 9-point FD methods [15–
17] are the most advanced FD formulations for the 2-D inhomogeneous
Helmholtz equation given below:

[
∆ + k2

]
u(z, x) = f(z, x),

∆ = ∇2
t =

∂2

∂z2
+

∂2

∂x2
.

(8)

The source term f(z, x) is a given continuous 2-D function. For
numerical simulation of passive optical waveguide devices we can
remove this term with the assumption f(z, x) = 0. Due to symmetry
in 2D FD-FD geometry, the central point is related to two quantities,
namely the sum of all side point values (denoted by D1 = ur +
uu + ul + ud) and the sum of all corner point values (denoted by
D2 = une+unw+use+usw.) With these notations, we list the 4th-order,
9-point FD-FD stencil [Eq. (27) Ref. [15],] below:

A0uc + AsD1 + AcD2 = 0.

A0 =−10
3

+k2∆2

(
1− k2∆2

12

)
, As =

2
3
, Ac =

1
6
. (FD4-9)

(9)

Similarly we list the 6th-order, 9-point FD-FD stencil [Eq. (28)
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Ref. [16],] below:
d20uc + d21D1 + d20D2 = 0.

d20 = −10
3

+ k2∆2

(
46
45
− k2∆2

12
+

k4∆4

360

)
, (FD6-9)

d21 =
2
3
− k2∆2

90
, d22 =

1
6

+
k2∆2

180
.

(10)

As we can see from References [15, 16], these high-order FD-FD
schemes of Eq. (9) and Eq. (10) produce similar matches to the
published analytical solution example. Numerical experiments of the
FD6-9 stencil with sampling densities of three to four points per
wavelength are able to produce accurate results. These methods
achieve a low level of sampling which is very close to the theoretical
Nyquist-Shannon spatial sampling limit of two points per wavelength.

3. THE THEORY OF CONNECTED LOCAL FIELDS
(CLF)

It took more than a decade to develop the FD4-9 stencil since the
formulation of the FD2-9 scheme and subsequently eight years to
progress to the FD6-9 formulation. The immediate question is whether
we can improve on the FD6-9 scheme for the Helmholtz equation. If
we use additional information, namely the analytical solution, of the
Helmholtz equation the answer to the question is yes. We recently
discovered and published [21] a formula based on connecting square
patches of local fields. It is structurally equivalent to the nine-point
FD-FD coefficients and it possesses superior numerical properties in
providing very low temporal and spatial dispersions. In following
text, we will derive this new nine-point formulation with Fourier-Bessel
series expansion (FBSE) of a local field defined on a square FD patch
shown in Fig. 1.

3.1. 1D Homogeneous Case

Although there are many methods for obtaining solutions of the
Helmholtz equation in 1-D homogeneous cases, it is helpful to derive
the method of connected local fields (CLF) for this straightforward
case. Note that it is not necessary for the spacing between adjacent
points to be equal the theory of CLF under 1-D case. However, equal
spacing in both directions is required by the theory of CLF for 2-D and
3-D cases. In 1D, we seek the local field representation u(0)(z) which
is bounded between u−1 and u1

u−1 = u(−∆z), u0 = u(0), u1 = u(∆z) (11)
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This local field can be completely expressed in terms of u−1 and u1

when the frequency ω, material index n, wave speed c and hence the
wavenumber k = nω/c, are known. We have:

u(0)(z) = u−1
sin k(∆z − z)

sin(2k∆z)
+u1

sin k(z + ∆z)
sin(2k∆z)

. −∆z ≤ z ≤ ∆z (12)

The local field u(0)(z) is written as weighted sum of the two “shifted
normalized sine” functions which are, in most cases when cos(k∆z) is
not zero, two independent solutions of the 1-D Helmholtz equation. In
this form, we can easily derive the FD-like coefficients for the centered
point u0. We have:

u0 =
1

2 cos(k∆z)
u−1 +

1
2 cos(k∆z)

u1. (13)

Let us compare Eq. (13) with the FD approximation of the 1-
D Helmholtz equation of Eq. (3). We see Eq. (3) can be obtained
by replacing the two cosine functions in Eq. (13) by the first two
terms of the Taylor series. The standard FD2-3 of Eq. (3) of is
only an approximation to the 1-D Helmholtz equation, while the LFE
formulation Eq. (13) is an exact solution to 1-D Helmholtz equation.
The exact local field solution u(0)(z) is connected to its two neighboring
local fields u(−1)(z) and u(1)(z) as u(1)(z) is connected to u(0)(z) and
u(2)(z). These local fields are algebraically connected in exactly in
the same way like the discrete points . . . , u−1, u0, u1, . . . are connected
by the respective FD-FD scheme. Hence “connected local fields” is
the name we choose to describe this proposed method of solving the
Helmholtz equation.

3.2. The Simple 2D LFE-5 Formulation

We derive the simple 2D LFE formulation which will lead to an
improved five-point FD-FD stencil. In the 2-D theory of CLF we
assume that 2-D points are equally spaced in x and z such that
∆x = ∆z = ∆. These four points are connected by a circle with a
radius ρ =

√
2∆. The question is how to better express the field inside

this circle in terms of field solutions at ur, uu, ul and ud. As illustrated
in Fig. 2, we expand the local field u(0,0)(ρ, ϕ) in the polar coordinate
system with uc as its center, using all terms up to the second-order
Fourier-Bessel series as

u(0,0)(ρ, φ) ≈ a0J0(kρ) + a1J1(kρ) cos φ + b1J1(kρ) sin φ

+a2J2(kρ) cos 2φ + b2J2(kρ) sin 2φ (14)
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Figure 2. The four side points of uc shown in a polar coordinate
system.

Next we evaluate Eq. (14) at all four side points and we obtain the
following equation that relates local field coefficients to EM field on
the four side points:




J0(k∆) J1(k∆) 0 J2(k∆)
J0(k∆) 0 J1(k∆) −J2(k∆)
J0(k∆) −J1(k∆) 0 J2(k∆)
J0(k∆) 0 −J1(k∆) −J2(k∆)







a0

a1

b1

a2


 =




ur

uu

ul

ud


 . (15)

Note that the last Fourier-Bessel coefficient b2 does not contribute to a
new row in Eq. (15) due to sin 2φ vanishing at those four polar angles.
The inversion formula for the above equation can be readily obtained
by noting that the four columns in the matrix of Eq. (15) are orthogonal
to each other. Given that the inverse of an orthonormal matrix is
simply its transposition, after column scaling and normalization, we
obtain an exact inversion formula to Eq. (15). Thus, we have:




a0

a1

b1

a2


 =




c0
4

c0
4

c0
4

c0
4

c1
2 0 − c1

2 0
0 c1

2 0 − c1
2

c2
4 − c2

4
c2
4 − c2

4







ur

uu

ul

ud


 ,

c0 =
1

J0(k∆)
, c1 =

1
J1(k∆)

, c2 =
1

J2(k∆)
.

(16)

Eq. (16) provides an analytical expression for Fourier-Bessel coefficients
a0, a1, b1, a2 of a local field u(0,0)(ρ, φ) in terms of four field entries
located on the side points. Furthermore we can solve for u0 in terms of
its immediate neighbors by noting that the zero-order coefficient a0 is
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the only term in Eq. (14) that does not vanish at the origin. Combing
Eq. (14) and Eq. (16), we obtain the following discretized version of
the Helmholtz equation.

uc = a0 =
ur + uu + ul + ud

4J0(k∆)
. (LFE-5) (17)

Since Eq. (17) is the structural equivalent to the standard FD-FD
equation, all the existing FD-FD methods for handling regions near the
interfaces, inhomogeneity, ABC, TBC and the matrix solver, etc. can
be used with minor modifications to improve the local accuracy. Due
to its improved dispersion characteristics in a homogeneous medium
Eq. (17) can be used to reduce memory and CPU resource requirements
in the FD-FD computation process. It is interesting to note that
Eq. (17) can also be derived under the standard 5-point FD-FD
formulation by minimizing the residual phase error of plane wave
solution [22].

3.3. The Full 2D LFE-9 Formulation

The simple 2D LFE-5, Eq. (17) is derived from a Fourier-Bessel series
expansion of the EM field in a circular patch enclosing five FD points.
To obtain the full 2D LFE-9 formulation a larger square patch is
needed. Four additional corner points are enclosed in this square local
field. This field is expressed as:

u(0,0)(ρ, φ) ≈
4∑

n=0

anJn(kρ) cosφ +
3∑

n=1

bnJn(kρ) sin φ. (18)

Note that b4 is not included in Eq. (18) as b2 is not included in Eq. (15).
Evaluating the above equation for the eight points on the square we
have:



Js
0 Js

1 0 Js
2 0 Js

3 0 Js
4

Js
0 0 Js

1 −Js
2 0 0 −Js

3 Js
4

Js
0 −Js

1 0 Js
2 0 −Js

3 0 Js
4

Js
0 0 −Js

1 −Js
2 0 0 Js

3 Js
4

Jm
0

Jm
1√
2

Jm
1√
2

0 Jm
2

−Jm
3√
2

Jm
3√
2

−Jm
4

Jm
0

−Jm
1√
2

Jm
1√
2

0 −Jm
2

Jm
3√
2

Jm
3√
2

−Jm
4

Jm
0

−Jm
1√
2

−Jm
1√
2

0 Jm
2

Jm
3√
2

−Jm
3√
2

−Jm
4

Jm
0

Jm
1√
2

−Jm
1√
2

0 −Jm
2

−Jm
3√
2

−Jm
3√
2

−Jm
4







a0

a1

b1

a2

b2

a3

b3

a4




=




ur

uu

ul

ud

une

unw

usw

use




, (19)

Js
n = Jn(k∆), Jm

n = Jn(
√

2k∆), n = 0, 1, 2, 3, 4.
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To obtain the FD-like, LFE-9 stencil, we need to find the solution
of a0. If a0 is all we need; we can reduce the complexity of the
8 × 8 matrix in Eq. (19) to a mere 2 × 2 matrix equation. The
symmetry condition demands the LFE-9 stencil follow the same form,
i.e., A0uc + AsD1 + AcD2 = 0 as does every existing FDx-9 stencil.
By summing rows 1–4 in Eq. (19) as the first equation and summing
rows 5–8 as the second equation we have the following reduced matrix
equation:

4 ·
[

Js
0 Js

4
Jm

0 −Jm
4

] [
a0

a4

]
=

[
D1

D2

]
. (20)

We note that matrix elements in columns 2 to 7 are all zero in the
collapsed matrix row group of Eq. (19). Hence, the other six unknowns
of Eq. (19) do not contribute to Eq. (20). The analytic solution of
Eq. (20) is simply as follows:

[
a0

a4

]
=

1
4 (Js

0Jm
4 + Jm

0 Js
4)

[
Jm

4 Js
4

Jm
0 −Js

0

] [
D1

D2

]
. (21)

The solution of a0 leads to the following LFE-9 equation:

uc =
1
4

J4

(√
2k∆

) · (ur + uu + ul + ud)
+J4 (k∆) · (une + unw + use + usw)

J0 (k∆) · J4

(√
2k∆

)
+ J0

(√
2k∆

) · J4 (k∆)
. (LFE-9) (22)

This recently published LFE-9 formulae is structurally equivalent
to the nine-point FD-FD stencils such as FD2-9 (Eq. (7)), FD4-9
(Eq. (9)) and FD6-9 (Eq. (10)). We shall prove in future paper that
high-order compact stencils like Eqs. (7), (9), and (10) can be derived
from LFE-9 formulation.

3.4. The LFE-9 Reconstruction Formulae

One of the unique features of our proposed theory of connected local
field is that within each square patch, there is an analytical expression
for the local field in terms of the truncated local Fourier-Bessel series.
Furthermore, Eq. (19) is the link between the eight-term Fourier-
Bessel series and the eight EM field values sampled on the sides and
corners. As a result, the local field (inside the square patch) can be
reconstructed/interpolated in terms of said eight points. For other
FD-FD methods, an arbitrary field must be interpolated by some
two-dimensional interpolation methods such as the bilinear or bicubic
spline interpolation methods [23, 24]. Let us derive the closed-form
expression for the LFE-9 reconstruction formulae. At first sight, a
symbolic/analytical inversion of an 8 × 8 matrix is a daunting task
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if not impossible. Fortunately by exploiting the built-in symmetry
structure of this problem, it can be completed. We see that there are
two point groups in Eq. (19), namely the side points and the corner
points. The members in the plus (side) group u+ = [ur, uu, ul, ud]

T are
distanced ∆ away from the central point whereas the members in the
cross (corner) group u× = [une, unw, usw, use]

T are located
√

2∆ away
from the referenced point uc. In terms of these two vectors we may
rewrite Eq. (19) into the following compact 2× 2 matrix:

[
Q11 Q12

Q21 Q22

] [
cL

cH

]
=

[
u+

u×

]
, (23)

where cL = [a0, a1, b1, a2] is the low FB coefficient vector and cH =
[b2, a3, b3, a4]

T is the high FB coefficient vector. The inversion formula
for the above equation can be obtained by noting that the columns in
Q11 and Q22 of Eq. (23) are orthogonal to each other therefore, the
exact inverse of Q11 and Q22 can be obtained To solve for cL we first
use the second Eq. (23) and express cH as

cH=
(
Q−1

22

)
(u× −Q21cL) . (24)

Thus we have

cL = (Q11 −Q12Q22Q21)
−1 (u+ −Q12Q22u×) . (25)

In a similar way we obtain

cH =
(
Q22 −Q21Q−1

11 Q12

)−1 (
u× −Q21Q−1

11 u+

)
. (26)

After a few algebraic steps, we have the analytic formulae for FB
coefficients. They are, as expressed in four groups listed below:

a0 =
Jm

4 (ur + uu + ul + ud) + Js
4 (une + unw + usw + use)

4 (Js
0Jm

4 + Jm
0 Js

4)
,

a4 =
Jm

0 (ur + uu + ul + ud)− Js
0 (une + unw + usw + use)

4 (Js
0Jm

4 + Jm
0 Js

4)
.

(27)

a1 =
√

2Jm
3 (ur − ul) + Js

3 (une − unw − usw + use)
2
√

2 (Js
1Jm

3 + Jm
1 Js

3)
,

b1 =
√

2 Jm
3 (uu − ud) + Js

3 (une + unw − usw − use)
2
√

2 (Js
1Jm

3 + Jm
1 Js

3)
.

(28)

a2 =
(ur − uu + ul − ud)

4Js
2

,

b2 =
(une − unw + usw − use)

4Jm
2

.

(29)
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a3 =
√

2Jm
1 (ur − ul) + Js

1 (−une + unw + usw − use)
2
√

2 (Js
1Jm

3 + Jm
1 Js

3)
,

b3 =
√

2Jm
1 (−uu + ud) + Js

1 (une + unw − usw − use)
2
√

2 (Js
1Jm

3 + Jm
1 Js

3)
.

(30)

Equation (19) and Eqs. (27)–(30) are all we need for the
reconstruction of a 2D local field In the next section we will examine
and compare numerical dispersion properties of all these FD-FD
stencils.

4. DISPERSION CHARACTERISTICS

The theoretical phase velocity of a plane wave propagating in an ideal
linear non-dispersive medium is constant independent of the frequency
and the direction of propagation. When the Helmholtz equation is
solved by numerical methods such as the FD-FD method or our CLF
method the equivalent phase velocity of a plane wave depends on the
frequency as well as the direction of propagation. Numerical dispersion
is the difference between these two phase velocities. It is good to
know that for an infinite homogeneous media, at any given frequency,
there exists infinite number of plane wave solutions to both the 2-D
Helmholtz partial differential equation and the discretized Helmholtz
FD equation. The analytical plane wave solution is given by:

u (z, x) = e−jk·ρ, (31)

where ρ = (z, x) and the vector symbol k = (kz, kx) =
k (cos θ, sin θ) denotes the vectorial analytic wavenumber of the plane
wave propagating in the θ direction. In an infinite homogeneous
medium, every point has an identical FD equation with its neighboring
points. There is no need to solve for the infinitely huge matrix equation
in a source-free medium while we look for a plane wave solution.
Thus, given a FD-like method, we look for a discretized solution of
the following form:

u (zi, xj) = exp (−jκ · ρi,j) ,

ρi,j = (zi, xj) zi = i∆, xj = j∆.
(32)

Here the symbol (kappa) κ = (κz, κx) = κ (cos θ, sin θ) denotes the
vectorial numerical wavenumber of the plane wave propagating in the
θ direction. The field on the circle of radius ρ will be:

u (ρ cosφ, ρ sinφ) = ejκρ cos(φ−θ). (33)
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Evaluating this equation at ur, uu, ul, ud and uc we have:
ur = ejκ∆cos θ, uu = ejκ∆sin θ,

ul = e−jκ∆cos θ, ud = e−jκ∆sin θ,

uc = 1.

(34)

Similarly, evaluate this equation at une, unw, use and usw we have:

une = ej
√

2κ∆cos(θ−π/4), unw = ej
√

2κ∆sin(θ−π/4),

usw = e−j
√

2κ∆cos(θ−π/4), use = e−j
√

2κ∆sin(θ−π/4).
(35)

Thus,
D1 = ur + uu + ul + ud = 2 [cos (κ∆cos θ) + cos (κ∆sin θ)] . (36)

Similarly we have

D2 = une + unw + use + usw = 2 cos
(√

2κ∆cos
(
θ − π

4

))

+2 cos
(√

2κ∆sin
(
θ − π

4

))
. (37)

4.1. Numerical Dispersion Characteristics of the FD2-5 Case

To obtain the numerical dispersion relation for the standard five-point
FD-FD scheme we substitute Eq. (36) into Eq. (4) and we have

4− k2∆2 = 2 [cos (κ∆cos θ) + cos (κ∆sin θ)] . (FD2-5) (38)

Note that κ =
√

κ2
x + κ2

z and that k 6= κ. This nonlinear equation gives
the exact relation between κ and k, the numerical and the analytical
wavenumber of the plane wave propagating in an infinite homogeneous
medium. In other words, the numerical κ is an implicit function of
k which is function of frequency and direction of propagation. An
alternate form for Eq. (34) is given by [25]

k = κ

√√√√cos2 θ

[
sin

(
κ∆cos θ

2

)
(

κ∆cos θ
2

)
]2

+ sin2 θ

[
sin

(
κ∆ sin θ

2

)
(

κ∆sin θ
2

)
]2

. (39)

It is easy to see that as ∆ → 0 we have the linear isotropic dispersion
relation k = κ.

4.2. Numerical Dispersion Characteristics of the FD2-9 Case

Substituting Eqs. (36), (37) into Eq. (7), we have the numerical
dispersion relation for FD2-9 stencil:

10−3k2∆2 = 4 cos(κ∆cos θ)+4 cos(κ∆sin θ)+cos
(√

2κ∆cos
(
θ−π

4

))

+cos
(√

2κ∆sin
(
θ − π

4

))
. (FD2-9) (40)
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The additional terms in Eq. (40) improves the “isotropicness” of the
FD2-9 formulation over FD2-5.

4.3. Numerical Dispersion Characteristics of LFE-5 Case

To obtain the numerical dispersion relation for the 2D FB-LFE
formulation (which will be denoted as LFE-5), we substitute Eq. (17)
into Eq. (36) and we have

2J0(k∆) = cos (κ∆ cos θ) + cos (κ∆ sin θ) . (LFE-5) (41)

4.4. Numerical Dispersion Characteristics of the LFE-9 Case

To obtain the numerical dispersion relation for the 2D LFE-9
formulation we substitute Eq. (19) into Eq. (24) and we have

2
[
J0

(√
2 k∆

)
· J4 (k∆) + J0 (k∆) · J4

(√
2 k∆

)]

= J4

(√
2 k∆

)
· [cos (κ∆cos θ) + cos (κ∆sin θ)]

+J4 (k∆) ·
(
cos

(√
2κ∆cos

(
θ−π

4

))
+cos

(√
2κ∆sin

(
θ−π

4

)))
.

(LFE-9) (42)

4.5. Low Frequency Dispersion Analysis for FD2-5, FD2-9
and LFE-5 Formulae

To better understand the order of errors in FD2-5 and FD2-9 at low
frequency, we apply the following Taylor’s expansion to the right hand
sides of Eqs. (38) and (40):

cos(z) =
∞∑

n=0

(−1)n

(2n)!
z2n ≈ 1− 1

2
z2 +

1
24

z4 − 1
720

z6. (43)

To simplify the expression, we first define the normalized analytical
wavenumber V and the corresponding normalized numerical wavenum-
ber B as

V
∆= k∆, B

∆= κ ∆. (44)
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We also need the following side calculations for the right hand size of
Eqs. (38), (40), and (41):

cos (B cos θ) + cos (B sin θ)

≈
(

1− B2 cos2 θ

2
+

B4 cos4 θ

24
− B6 cos6 θ

720

)

+
(

1− B2 sin2 θ

2
+

B4 sin4 θ

24
− B6 sin6 θ

720

)
,

= 2− 1
2
B2 +

B4

96
(3 + cos 4θ)− B6

5760
(5 + 3 cos 4θ) , (45)

and
cos (B (sin θ + cos θ)) + cos (B (sin θ − cos θ))

≈
(
1−1

2
B2(sinθ+cosθ)2+

B4

24
(sinθ+cosθ)4−B6

720
(sinθ+cosθ)6

)
,

+
(
1−1

2
B2(sinθ−cos θ)2+

B4

24
(sinθ−cosθ)4−B6

720
(sinθ−cosθ)6

)
,

= 2−B2+
B4

12
(
sin4θ+cos4θ+6 sin2θcos2θ

)− B6

720
(5−3cos 4θ) ,

= 2−B2 +
B4

24
(3− cos 4θ)− B6

720
(5− 3 cos 4θ) . (46)

Now we may express the dispersion error for FD2-5 and FD2-9 as
4− V 2 = 2 cos (B cos θ) + 2 cos (B sin θ) ,

V 2 = B2 − B4

48
(3 + cos 4θ) +

B6

2880
(5 + 3 cos 4θ) , (FD2-5)

(47)

and:
10−3V 2 = 4 (cos (B cos θ) + cos (B sin θ)) ,

+ cos (B (sin θ + cos θ)) + cos (B (sin θ − cos θ)) ,

= 8− 2B2 +
B4

24
(3 + cos 4θ)− B6

1440
(5 + 3 cos 4θ),

+2−B2+
B4

24
(3−cos 4θ)− B6

720
(5−3 cos 4θ) , (FD2-9)

V 2 = B2 − B4

12
+

B6

1440
(5− cos 4θ) .

(48)

For the dispersion error of LFE-5 case, we use the following Taylor’s
expansion of the Bessel function in Eq. (41):

J0(z) =
∞∑

n=0

(−1)n

(n!)2
(z

2

)2n
≈ 1− 1

4
z2 +

1
64

z4 − 1
2304

z6. (49)
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This would lead to following expression:

2J0(V ) = cos (B cos θ) + cos (B sin θ) ,

V 2−V 4

16
+

V 6

576
=B2−B4

48
(3+cos4θ)+

B6

2880
(5+3cos4θ) . (LFE-5)

(50)

The above analysis becomes too complicated for the dispersion error
of LFE-9 case. We simply leave that to the numerical analysis in
Section 5. Here we summarize the B−V relationship at low frequencies
when B and V are both less than 1.

B2 = V 2 + B4

48 (3 + cos 4θ) , (4th-degree FD2-5)

B2 = V 2 − V 4

16 + B4

48 (3 + cos 4θ) (4th-degree LFE-5)

B2 = V 2 + B4

12 . (4th-degree FD2-9)

B2 = V 2 + B4

12 − B6

1440(5− cos 4θ). (6th-degree FD2-9)

(51)

In overall performance, FD2-9 is worse than FD2-5 in temporal
dispersion for most plane wave angles except when θ equals to an
integer multiple of π/2. At those incident angles, the phase errors are
identical for FD2-5 and FD2-9. However, FD2-9 has a lower order of
angular variation than FD2-5. In fact the 4th degree angular dispersion
is zero for FD2-9. Another interesting point is that when θ equals to
integer multiple of π/8, the 4th degree numerical dispersion error for
LFE-5 is zero; i.e., at low frequencies B and V are equal up to the 4th
power. This implies all existing 2nd-order accurate FD-FD programs
benefit from a simple replacement of the FD coefficients with those of
LFE-5.

5. NUMERICAL DISPERSION STUDY OF LEF-9
FORMULATION

LFE-9 dispersion characteristics are much more complex than those
in the FD2-5, FD2-9 and LFE-5 cases. Analytical dispersion
error analysis for the LFE-9 formula will have to wait for further
developments. In this section, we will numerically evaluate and
compare these four cases to demonstrate the advantages of the LFE-
9 formulation. Comparisons of the LFE-9 performance with compact
high-order 9 point FD-FD stencils of FD4-9 and FD6-9 will be detailed
in our future works.

5.1. V Versus B Curves

In waveguide analysis, we study k − β curves. The slope of the line
connecting a point on the k − β to the origin is the ratio of phase
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Figure 3. V versus B for
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incident angle is fixed at θ = 0
degrees. The maximum range
of V , the normalized analytic
wavenumber, is π.
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Figure 4. V versus B for
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degrees. The maximum range
of V , the normalized analytic
wavenumber, is π.
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Figure 5. V versus B for
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9 formulae. The plane wave
incident angle is fixed at θ = 30
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of V , the normalized analytic
wavenumber, is π.

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

3

 V versus  B, θ = 45 degrees.

 B =κ∆

 V
=

 k
∆

Exact
FD2-5
FD2-9
LFE-5
LFE-9

Figure 6. V versus B for
FD2-5, FD2-9, LFE-5 and LFE-
9 formulae. The plane wave
incident angle is fixed at θ = 45
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wavenumber is, π. Note that B <
V for LFE-5.
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velocity over the speed of light. The tangent of a point on the curve
stands for the ratio of the group velocity over speed of light [26, 27].
Here we consider a given FD-FD method with the numerical grid as
some special waveguide and we can study its k − β characteristics.
Using the normalized analytic wavenumber V = k∆ as our y-axis and
normalized numerical wavenumber B = κ∆ as our x-axis. In Figs. 3–
6, we plot K−B curves for FD2-5, FD2-9, LFE-5 and LFE-9 formulae
with incident angles fixed at 0, 15, 30 and 45 degrees. These dispersion
curves are periodic functions with a period of π/4. They are also even
with respect to the θ = π/8 axis.

From these figures we see the the LFE-9 curves follow very closely
to the exact V = B black curves. In most cases FD2-5 shows better
performance than FD2-9 except when they are equal that when the
incident angles θ are fixed at some integer multiple of π/2. We also
learn that the normalized numerical wavenumbers B are greater than
the normalized analytic wavenumbers V. We note, from Fig. 6, an
exception to this rule that B < V on some of the LFE-5 curves.

5.2. Relative Dispersion Errors as Function of Sampling
Density

In running FD-FD programs, the user is asked to choose a free
simulation parameter, namely, the sampling density. In our paper we
label it Nλ where is defined as

Nλ =
λ

n∆
=

π

V
. (52)

We usually set Nλ = 20 in running FD2-5 codes to ensure a less
than 1% phase error. Setting Nλ to a high value is very costly.
Most computational costs in running 2D FD2-5 codes are the time
and computer core memory needed to inverse a huge banded sparse
matrix. The theoretical CPU run time is proportional to (Nλ)4 while
the memory required is proportional to (Nλ)3 . This is why we are
interested in the numerical method that would ask for a smaller Nλ

for a given accuracy requirement. In Figs. 7–10, we plot the relative
dispersion error ε as function of sampling density for FD2-5, FD2-9,
LFE-5 and LFE-9 formulae with incident angles fixed at 0, 15, 21 and
22.5 degrees. The relative phase error ε is defined as

ε =
|V −B|

V
. (53)

From its definition ε can also be interpreted as a relative phase velocity
error. The range of Nλ starts from a low Nλ = 2 to a high Nλ = 50.
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It is interesting to note from Fig. 10 that LFE-5 is more
accurate than LFE-9 for plane wave propagating at θ = 22.5 degrees.
Its performance degrades immediately when the propagation angle
deviates for only a few degrees as seen from Fig. 9. From Figs. 7–
10 we can clearly see that LFE-9 curves possess superior numerical
properties of being extremely flat except where Nλ close to 2.
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5.3. Numerical Study of LFE-9 Spatial Dispersion

Finally, in Figs. 11–16 we plot nB as function of direction for FD2-5,
FD2-9, LFE-5 and LFE-9 formulae with a fixed Nλ. The effective index
nB, which is a function of frequency as well as plane wave propagation
direction, is defined as:

nB =
B

V
. (54)

We can clearly see from Figs. 11–16 that LFE-9 curves possess
superior isotropic properties that the effective numerical index nB

is virtually sitting on top of the unit circle and the differences only
become noticeable when Nλ = 2.1 (V = 1.5). In fact, when V < 1
(Nλ > π), the relative phase error for LFE-9 which is defined as
εLFE-9 = (BLFE-9−V )/V , can be shown (detail to be published) to be:

εLFE-9 =


1.29

(
1− 11k2∆2

100 + k4∆4

225

)
cos (8θ)

1− k2∆2

4 +
(

33−cos(4θ)
1440

)
k4∆4




(
k∆
10

)6

. (55)

From reading the slopes of LFE-9 curves in Figs. 6–10, we can verify
this low, 6th order phase error of εLFE-9 in Eq. (55). Like LFE-5,
the relative phase error of LFE-9 does not have a DC term. We note
that εLFE-9 is a periodic function of θ and in its fundamental period
0 ≤ θ ≤ π/4, the two normalized frequencies B and V are competing
with each other that:




B < V,
π

16
≤ θ ≤ 3π

16
,

B > V, otherwise.
(56)

6. PRINCIPLES OF CONNECTED LOCAL FIELDS

There are basically two types of methods, analytic and numerical,
for solving the inhomogeneous Helmholtz equation in a piece-wise
constant medium. Analytic or semi-analytical methods such as
coupled transverse-mode integral equation methods [28, 29] and mode-
matching methods [30, 31] break the problem into sub-regions whose
solutions are made of some linear combinations of exact basis functions
These methods focus on matching the tangential fields along the
borders where sub-regions meet. They are very powerful but difficult to
implement for complex waveguide devices. On the other hand, FD-FD
and FD-FE (finite-element) methods [32, 33] are a lot more versatile
and can be tailored for complex structures. These methods handle the
interface conditions with ease but spend computational resources on
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Figure 14. Spatial dispersion for
FD2-5, FD2-9, LFE-5 and LFE-9
at Nλ = 3.0.

solving the Helmholtz equation. The method of connected local fields
is the mixture of both types of methods. Like analytical methods, CLF
starts with some linear combination of exact “local” basis functions.
There is no need to numerically solve for the Helmholtz equation.
Unlike the analytical method, CLF does not match tangential fields
across material interfaces, since these interface/boundary conditions
are handled during the construction of LFE coefficients in every square
patch containing two materials or more. In fact, CLF pre-solves many
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Figure 16. Spatial dispersion for
LFE-5 and LFE-9 at Nλ = 2.1.

small problems analytically and store the results in a library. It then
combines the local solutions and forms a matrix equation like the FD-
FD method with a compact 9-point stencil.

What is new in the method of connected local fields is that
the solution consists of a rectangular array of overlapping patches of
local fields. Within each patch there is a centered (reference) point
surrounded by eight neighboring points. This squared field is expressed
in terms of a truncated Fourier-Bessel series (FBS) of up to the 4th
order Bessel function. Since each grid point acts as a reference point for
its local field, these patches of unit cells overlap one another very much
like cellular phone reception coverage. As a result, each FBS is coupled
to all eight neighboring FBSs. Four local fields simultaneously define
the field at a given point. For example, in Fig. 1, for a field u(z, x) in
the first quadrant 0 < z < ∆, 0 < x < ∆, it is defined simultaneous
by four local fields centered at uc, ur, une and uu respectively. The
virtue of CLF is that every local field exactly satisfies the Helmholtz
equation It is only natural to pursue the “equation” governing these
FBSs.

At this stage we can set up equations for these FBSs using the
point matching principle or by a mode matching method. Such an
approach will result in a block tri-diagonal matrix equation for the
unknown arrays of FSBs. Since each block will be made of a full 8× 8
full matrix, it would not be as computationally efficient as existing
methods such those high-order FD schemes FD4-9 and FD6-9. A
different approach is to take advantage of the fact that each square
patch, the FBS and the eight field values on the square boundary
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are equivalent LFE analysis provides the exact link between FBS and
bordering points through Eq. (22). Furthermore, each centered point
in a given square patch is also a side point or a corner point on eight
other neighboring patches. LFE-9 provides a linear equation linking
every centered point with its boundary points. Thus, all points on the
2-D grids of the theory of CLF are inter-connected just like a high-
order FD-FD method connects its 2D unknowns with a compact nine
point stencil.

Once the linear equation for CLF is solved, the entire solutions are
made of patches of local fields each capable of an analytic expression
reconstruction, by the eight points enclosing the patch. Hence our
proposed theory of CLF provides semi-analytical solutions to the 2-D
Helmholtz equation as stated in the title of this paper.

7. DISCUSSION

There are many questions waiting to be answered in this new theory
of CLF. For example, are the four field representations of one of four
sub-domains (with an area of ∆2) of Fig. 1 identical? If not, how much
do they differ from one another? We will try to address this issue in
our follow-up paper where we shall study the CLF solution of the 2D
Green’s function of the Helmholtz equation and its error statistics by
comparing it with the exact analytical solution.

7.1. Extension to Inhomogeneous Cases

Although we presented our CLF theory for a homogeneous medium, it
can be directly extended to a medium with continuous index variations
by assuming a constant index in each square patch. For those
inhomogeneous media with step discontinuities, modifications to the
LFE coefficients will be required if we want to maintain the same level
of accuracy for all local fields. Before we complete building the library
of LFE coefficients for these special patches we can always resort to
methods using either the simple weighted averaged FD coefficients [4, 6]
or other published works for constructing FD-FD coefficients near a
junction or curve surfaces [22, 34].

7.2. Extension to 3-D Cases

We are also working on an extension of CLF theory for the 3-D case.
In a 3D CLF, the basic patch is a cube. The size of the equivalent FD-
FD stencil will be twenty seven. On the boundary of the cube there
are a total of 26 points, six on the faces (facets, sides), twelve on the
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edges and eight on the vertices (corners). It is however, not an easy
task to carry out the 3D LFE extension since between orders zero to
four, there are only a total of 25 terms in the truncated series of the
spherical harmonics. With the last term, j4(kr)P 4

4 (cos θ) sin 4φ [26],
not contributing to any of these special 26 points on the surface of the
cube, we are faced with the problem of setting up 26 equations with
only 24 unknowns. We expect the analytical reconstruction formula,
if derived, will be too complex to be practically applicable.

8. CONCLUSIONS

The standard second-order accurate FD-FD method requires a more
than 10 points per wavelength sampling of the time-harmonic EM
wave field. As a result, the FD-FD matrix equation becomes too
large for most 3D problems and in many cases for some complex 2D
optical waveguide devices. We derive and propose a new compact
nine-point FD-FD stencil based on local Fourier-Bessel expansion for
the 2-D Helmholtz equation in a homogeneous medium. Our LFE-9
formulation includes an analytic reconstruction equation for the local
field in a square patch. We also investigate, in detail, the numerical
dispersion characteristics of this LFE-9 equation. Our results show
that LFE-9 is capable of reducing the sampling density of a FD-FD
simulation to just a little more than two points per wavelength which
is Nyquist-Shannon’s sampling theorem’s theoretical limit.
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