Vol. 110
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-06
Hybrid Finite-Difference/Mode-Matching Method for Analysis of Scattering from Arbitrary Configuration of Rotationally-Symmetrical Posts
By
Progress In Electromagnetics Research, Vol. 110, 23-42, 2010
Abstract
In this paper, the hybrid approach to the analysis of electromagnetic wave scattering from arbitrary configuration of body-of-revolution (BOR) posts is presented. The proposed approach is based on the representation of each scatterer or set of scatterers by an effective sphere with the known boundary conditions defined by transmission matrix. In the analysis of each single axially-symmetrical post with irregular shape we utilize the finite-difference frequency-domain/mode-matching technique (FDFD/MM). Then the scattering parameters of investigated set of posts are obtained utilizing the analytical iterative scattering procedure (ISP). This work is an extension of our previously published results where the proposed technique was defined in cylindrical coordinates and was limited to configurations of infinitely long parallel cylinders with arbitrary cross-section. In this paper we extend this method by formulating it in spherical coordinates. This allows us to significantly increase the versatility of the developed approach and in result to include in the analysis the sets of arbitrary located and oriented rotationally-symmetrical posts. The accuracy and efficiency of the proposed technique are discussed. The presented numerical results are verified with the ones obtained from commercial software.
Citation
Adam Kusiek, and Jerzy Mazur, "Hybrid Finite-Difference/Mode-Matching Method for Analysis of Scattering from Arbitrary Configuration of Rotationally-Symmetrical Posts," Progress In Electromagnetics Research, Vol. 110, 23-42, 2010.
doi:10.2528/PIER10092401
References

1. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano convex lens," Progress In Electromagnetics Research, Vol. 83, 25-42, 2008.
doi:10.2528/PIER08041404

2. Andres-Garcia, B., L. E. Garcia Munoz, V. Gonzalez-Posadas, F. J. Herraiz-Martnez, and D. Segovia-Vargas, "Filtering lens structure based on srrs in the low THz band," Progress In Electromagnetics Research , Vol. 93, 71-90, 2009.
doi:10.2528/PIER09040105

3. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902

4. Solimene, R., A. Brancaccio, R. Pierri, and F. Soldovieri, "TWI experimental results by a linear inverse scattering approach," Progress In Electromagnetics Research, Vol. 91, 259-272, 2009.
doi:10.2528/PIER09021609

5. Poli, L. and P. Rocca, "Exploitation of TE-TM scattering data for microwave imaging through the multi-scaling reconstruction strategy," Progress In Electromagnetics Research, Vol. 99, 245-290, 2009.
doi:10.2528/PIER09101105

6. Andreasen, M., "Scattering from bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 2, 303-310, Mar. 1965.
doi:10.1109/TAP.1965.1138406

7. Glisson, A. W. and D. R. Wilton, "Simple and efficient numerical techniques for treating bodies of revolution," Tech. Rep., Vol. 22, University of Mississippi, Mar. 1979.

8. Huddleston, P. L., L. N. Medgyesi-Mitschang, and J. M. Putnam, "Combined field integral equation formulation for scattering by dielectrically coated conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 4, 510-520, Apr. 1986.
doi:10.1109/TAP.1986.1143846

9. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, No. 5, 709-718, 1977.
doi:10.1029/RS012i005p00709

10. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 8, 275-285, 1984.
doi:10.1109/TAP.1984.1143430

11. Morgan, M. and K. Mei, "Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 2, 202-214, Mar. 1979.
doi:10.1109/TAP.1979.1142065

12. Greenwood, A. D. and J.-M. Jin, "Finite-element analysis of complex axisymmetric radiating structures," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 8, 1260-1266, Aug. 1999.
doi:10.1109/8.791941

13. Jin, J.-M., "A highly robust and versatile finite element boundary integral hybrid code for scattering by bor objects," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2274-2281, Jul. 2005.

14. Dunn, E. A., J.-K. Byun, E. D. Branch, and J.-M. Jin, "Numerical simulation of BOR scattering and radiation using a higher order FEM," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 3, 945-952, Mar. 2006.
doi:10.1109/TAP.2006.869936

15. Yan, W.-Z., Y. Du, H. Wu, D. W. Liu, and B. I. Wu, "Emscattering from a long dielectric circular cylinder," Progress In Electromagnetics Research, Vol. 85, 39-67, 2008.
doi:10.2528/PIER08081106

16. Yan, W.-Z., Y. Du, Z. Y. Li, E. X. Chen, and J. C. Shi, "Characterization of the validity region of the extended T-matrix method for scattering from dielectric cylinders with finite length," Progress In Electromagnetics Research, Vol. 96, 309-328, 2009.
doi:10.2528/PIER09083101

17. Hamid, A.-K., I. R. Ciric, and M. Hamid, "Iterative solution of the scattering by an arbitrary configuration of conducting or dielectric spheres," IEE Proceedings H Microwaves, Antennas and Propagation, Vol. 138, No. 6, 565-572, Dec. 1991.
doi:10.1049/ip-h-2.1991.0094

18. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

19. Quick Wave 3D (QWED), http://www.qwed.com.pl/.

20. Stratton, J. A., Electromagnetic Theory, Wiley, 2007.

21. Tsang, L., J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, John Wiley and Sons, INC., New York, 2000.
doi:10.1002/0471224286

22. Mackowski, D. W., "Analysis of radiative scattering for multiple sphere configurations," Proceedings of the Royal Society, Series A --- Mathematical and Physical Sciences, Vol. 433, No. 1889, 599-614, Jun. 1991.
doi:10.1098/rspa.1991.0066

23. Taflove, A., The Finite-difference Time-domain Method, Artech House, 1995.

24. Polewski, M. and J. Mazur, "Scattering by an array of conducting lossy dielectric, ferrite and pseudochiral cylinders," Progress In Electromagnetics Research, Vol. 38, 283-310, May 2002.
doi:10.2528/PIER02041000

25. Dahlquist, G. and A. Bjorck, Numerical Methods, Prentice Hall, 1974.