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Abstract—In this paper, the hybrid approach to the analysis of
electromagnetic wave scattering from arbitrary configuration of body-
of-revolution (BOR) posts is presented. The proposed approach is
based on the representation of each scatterer or set of scatterers
by an effective sphere with the known boundary conditions defined
by transmission matrix. In the analysis of each single axially-
symmetrical post with irregular shape we utilize the finite-difference
frequency-domain/mode-matching technique (FDFD/MM). Then the
scattering parameters of investigated set of posts are obtained utilizing
the analytical iterative scattering procedure (ISP). This work is an
extension of our previously published results where the proposed
technique was defined in cylindrical coordinates and was limited to
configurations of infinitely long parallel cylinders with arbitrary cross-
section. In this paper we extend this method by formulating it in
spherical coordinates. This allows us to significantly increase the
versatility of the developed approach and in result to include in
the analysis the sets of arbitrary located and oriented rotationally-
symmetrical posts. The accuracy and efficiency of the proposed
technique are discussed. The presented numerical results are verified
with the ones obtained from commercial software.
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1. INTRODUCTION

The analysis of scattering from an arbitrary set of body-of-revolution
(BOR) objects is crucial in many recent civil and military applications
(e.g., antenna systems for wireless communication [1, 2] or objects
identification in radar systems [3–5]). This creates the demand for
highly efficient and accurate analysis techniques of this phenomenon.
The numerical efficiency of the developed algorithms can be improved
by exploiting symmetry properties of the objects in the considered
structures. As a result, this allows to reduce the three dimensional (3D)
problem to a two-and-a-half (2.5D) dimensional one which is less time
consuming and involves lower requirements for computer resources.

Analysis techniques of BOR objects have been developed
intensively in literature for a long time [6–16]. Initially, the
method-of-moments (MoM) was used to solve the problem of axially-
symmetrical perfectly conducting post [6]. This approach was
extended by many other researchers to the analysis of radiating and
scattering problems from other kind of objects, e.g., homogenous
dielectrics [7], dielectric coated conductors [8], lossy dielectrics [9]
inhomogeneous dielectrics [10] or elongated dielectric cylinders [15, 16].
The drawback of this approach is its rapidly increasing complexity for
the inhomogeneous structures. Hence, this technique is limited to the
small group of homogenous or piecewise homogenous objects.

In the analysis of inhomogeneous BOR objects with complex
geometry the more numerically powerful techniques are hybrid
methods [11–14] which combine the partially-differential equation
(PDE) based methods (e.g., finite-difference time-domain (FDTD)
method, finite element method (FEM)) with analytical ones (e.g.,
Mode Matching (MM) technique, MoM). In these techniques the
discrete approach (FDTD, FEM) is only used in the limited area
surrounding the post, where the analytical solution of the problem is
difficult to determine. In the outer homogenous region the continuous
analytical form of the fields is assumed. The advantage of this approach
is that the complexity of the problem can be reduced, and time and
memory efficiency algorithms can be achieved. In the literature one can
find different hybrid techniques, which allow to solve the problem of
scattering with different accuracy and efficiency [11, 12, 14]. In [11] the
investigated rotationally symmetrical post was enclosed in an artificial
spherical object. In the inner region FEM technique was used and
the solution was combined with the exterior fields defined by series of
eigenfunctions. This technique became inefficient in the case of long
objects. To overcame this problem the FDTD-PML technique was
proposed in [12] where the cylindrical discrete region was used, which
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is more suitable for elongated BORs. However, due to the artificial
reflections in PML, the discrete area have to be increased which
results in decreasing the efficiency of this approach. In [14] the FE-BI
technique was proposed to the analysis of arbitrary inhomogeneous
objects. In this technique MoM was used to analyze the fields in
exterior area and as a result the mesh truncation could be placed very
close to the object to minimize memory usage.

All the mentioned hybrid techniques [11, 12, 14] are limited to
the single object analysis. In order to consider the arbitrary
set of objects in this paper we propose the hybrid approach
which is based on the combination of finite-difference frequency-
domain/mode matching (FDFD/MM) technique with the analytical
iterative scattering procedure (ISP) [17]. In our approach each
scatterer or set of scatterers is treated as an effective sphere which
encloses investigated elements and is represented by transmission
matrix defining the relation between the incident and scattered fields.
In the case of single post with irregular shape the transmission matrix
T is evaluated with the use of combination of finite-difference and
mode-matching technique. Since the T-matrix of each post is known
we utilize the defined in spherical coordinates ISP to determine the
total transmission matrix (Ttotal-matrix) of arbitrary configuration of
objects. Transmission matrix depends on the geometry and material
properties of the structure and does not depend on the excitation.
Hence, it can be easily applied to the analysis of scattering from the
configurations of objects illuminated with arbitrary incident field. This
paper is an extension of our previously published work. In [18] the
proposed technique defined in cylindrical coordinates was successfully
applied to the analysis of the sets of parallel cylinders with arbitrary
cross-section. In this paper we formulate the method in spherical
coordinates what significantly improves the versatility of this approach
in comparison to [18]. As a result configurations of arbitrary located
and rotated objects of finite height can be included in the analysis. The
convergence and accuracy of the method are verified and discussed.
The presented results are compared with the ones obtained from
commercial software QuickWave 3D (FDTD) [19].

2. FORMULATION OF THE PROBLEM

In the analysis of multiple element configuration with the use of
proposed hybrid approach we can distinguish two main stages (see
Fig. 1). The first one considers analyzing each individual post in its
local coordinate system. It involves defining an artificial homogeneous
spherical object enclosing considered post. In this stage we use
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the FDFD/MM technique to calculate the transmission matrix T of
each single element, which defines the relation between incident and
scattered fields. In the second stage the multiple post configuration is
analyzed with the use of the analytical iterative scattering procedure
(ISP). In the analysis we again define the artificial spherical object
enclosing the whole set. The result of this approach is a total
transmission matrix Ttotal.

FDFD/MM ISP

T

T
T

i

j

k

Ttotal

incident field

scattered field

incident field

scattered field

Ttotal

Figure 1. Scheme of the analysis of arbitrary configuration of objects
using hybrid FDFD/MM method.
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Figure 2. Single axially-symmetrical object in local coordinates.
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2.1. Single Object

We start our analysis from a single object in its local coordinate system
(see Fig. 2). In our approach we introduce lateral surface S:

S :

{
r = R,
θ ∈ [0, π],
ϕ ∈ [0, 2π].

(1)

which surrounds analyzed object and divides the computational
domain into two regions, where the analytical (region II) and discrete
FDFD (region I) solutions of Maxwell equations are used, respectively.
The aim of the analysis is to determine the relation between incident
and scattered fields in region II which is defined by transmission matrix
T. Such relation can be simply found for any spherical object with the
boundary conditions defined by impedance matrix Z relating electric
and magnetic fields (see Section 2.1.1). Since, our object has irregular
cross-section we use FDFD technique to determine the Z matrix on
the artificial spherical surface S (see Section 2.1.2). In result we
can treat investigated scatterer as an effective sphere with the known
boundary conditions defined by Z-matrix. Finally, utilizing mode-
matching technique we are obtaining the T-matrix of the considered
element.

2.1.1. T-matrix

In region II the total tangential to the surface S components of electric
and magnetic fields are expressed as follows:

EII
t =

2∑

i=1

N∑

n=1

n∑
m=−n

{
AE

inmzi
n(k0r)Mt

nm(θ, ϕ)

+AH
inm

1
k0r

∂(rzi
n(k0r))
∂r

Nt
nm(θ, ϕ)

}
, (2)

HII
t = − k0

jωµ0

2∑

i=1

N∑

n=1

n∑
m=−n

{
AE

inm

1
k0r

∂(rzi
n(k0r))
∂r

Nt
nm(θ, ϕ)

+AH
inmzi

n(k0r)Mt
nm(θ, ϕ)

}
, (3)

where ω = 2πf0, k0 = ω
√

µ0ε0, f0 is the frequency of analysis, µ0

and ε0 are magnetic permeability and electric permittivity of free
space, z1

n(·) and z2
n(·) denotes spherical Bessel and second kind Hankel

functions of n-th order, Mt
nm(·, ·) and Nt

nm(·, ·) are vector functions
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defined as follows:

Mt
nm(θ, ϕ) = ejmϕ

{
jm

sin θ
Pm

n (cos θ)iθ − ∂Pm
n (cos θ)

∂θ
iϕ

}
, (4)

Nt
nm(θ, ϕ) = ejmϕ

{
∂Pm

n (cos θ)
∂θ

iθ +
jm

sin θ
Pm

n (cos θ)iϕ

}
, (5)

and Pm
n (·) is an associated Legendre function defined according to [20].

In Equations (2) and (3) the field expansion coefficients can be related
using transmission matrix as follows:

A2 = TA1, (6)

where A1 is a column vector of known incident field coefficients A1nm

(e.g., plane wave — see Section 2.3) and A2 is a column vector of the
unknown coefficients A2nm of scattered field.

In order to determine T-matrix at first we define the tangential
components of electric and magnetic fields on lateral surface S in
region I:

EI
t (R, θ, ϕ) =

N∑

n=1

n∑
m=−n

{
CE

nmMt
nm(θ, ϕ) + CH

nmNt
nm(θ, ϕ)

}
, (7)

HI
t (R, θ, ϕ) = − k0

jωµ

N∑

n=1

n∑
m=−n

{
DE

nmNt
nm(θ, ϕ)+DH

nmMt
nm(θ, ϕ)

}
, (8)

where CE
nm, CH

nm, DE
nm and DH

nm are the unknown expansion field
coefficients. Now, by imposing the boundary continuity conditions
between tangential components of electric and magnetic fields on
surface S the following set of equations is obtained:

EII
t (R, θ, ϕ) = EI

t (R, θ, ϕ),

HII
t (R, θ, ϕ) = HI

t (R, θ, ϕ),
(9)

where θ ∈ [0, π], ϕ ∈ [0, 2π]. Taking the advantage of orthogonality
of Mt

nm(·, ·) and Nt
nm(·, ·) set of Equation (9) can be rewritten in the

matrix form as follows:

ME
A1A1 + ME

A2A2 = C, (10)

MH
A1A1 + MH

A2A2 = D, (11)

where all matrices are defined in Appendix A. Now we can introduce
the impedance Z-matrix representation of the object:

C = ZD, (12)

which defines the relation between the expansion coefficients C and
D of tangential electric (7) and magnetic (8) fields, respectively.
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Substituting relation (12) to (10) and then after some algebra
manipulations of obtained relation with (11) we can derive the
following expression:

T =
(
ZMH

A2 −ME
A2

)−1 (
ME

A1 − ZMH
A1

)
. (13)

Relation (13) allows us to determine T-matrix for any spherical object
with the known boundary conditions defined by Z-matrix.

It must be emphasized that T-matrix depends on the geometry
and material properties of the object but not on the excitation. This
approach allows us to limit our consideration to region II where the
scatterer is treated as an effective sphere described by its T-matrix.
For such an effective sphere the scattered field can be found for any
incident wave. Moreover, the advantage of this approach is that, the
transmission matrix of arbitrary rotated object by any set of Euler
angles α, β, γ [21] can be simply derived from the following analytical
relation:

Tα,β,γ = D−1T0D, (14)

where

D =




D0 0 · · · 0

0 D1
. . .

...
...

. . . . . . 0
0 · · · 0 DN


 and Dn =




D−n
n(−n) · · · Dn

n(−n)
...

. . .
...

D−n
nn · · · Dn

nn




and Dk
mn are the coefficients defined by recurrence relations presented

in [22].

2.1.2. Z-matrix

Since the analyzed axially-symmetrical post has irregular shape the
determination of its Z matrix representation with the usage of
analytical techniques becomes difficult. In order to solve this problem
we use 2.5D finite-difference frequency domain technique (FDFD). In
our formulation we assume that the variation of field in ϕ-direction
is described by a series of eigenfunctions ejmϕ (m = −M, . . . , M).
Utilizing orthogonality properties of these functions the above problem
can be solved for each eigenvalue m separately. In this case Maxwell’s
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equations take the following form:


0 − jm
r sin θ

1
r sin θ

∂ sin θ
∂θ

jm
r sin θ 0 −1

r
∂r
∂r

−1
r

∂
∂θ

1
r

∂r
∂r 0




[
Er

Eθ

Eϕ

]
= −jωµ0µr

[
Hr

Hθ

Hϕ

]
, (15)




0 − jm
r sin θ

1
r sin θ

∂ sin θ
∂θ

jm
r sin θ 0 −1

r
∂r
∂r

−1
r

∂
∂θ

1
r

∂r
∂r 0




[
Hr

Hθ

Hϕ

]
= jωε0εr

[
Er

Eθ

Eϕ

]
. (16)

Now we discretize the computational domain in ϕ = const semi-plane
with Yee-mesh defined in spherical coordinates (see Fig. 3). As a result
Equations (15) and (16) can be rewritten in a discrete form as follows:

Pm
1 (QEm + QbEm

b ) = jωµ0µrHm, (17)
Pm

2 Hm = jωε0εrEm, (18)

where P1 and P2 are matrices of derivatives, E and H are the column
vectors of electric and magnetic field component samples in interior
area of the region I and Eb contains samples of tangential electric field
components located at surface S.

In order to solve the problem for any excitation Eb we have
to also define the boundary conditions for field components Er, Eϕ

and Hr at the axis of symmetry AA′ : {r ∈ [0, R], θ = {0, π}}. From
Equations (17) and (18) it can be found that only Er is used to found
other probes of fields in area of discretization. In the case of m = 0
the value of Er at axis AA′ can be found from Ampere’s law [23] and
takes the following form:

Er(i,k) = (−1)αk
Hϕ(i,k)

jωε0εr(i,k)rh(i) (1− cos (∆θ/2))
, (19)

In above relation εr(i,k) is a dielectric constant in the r-direction for
the cell containing Er(i,k) , i = 1, . . . , I, k = {1,K} and

αk =
{

0 dla k = 1,
1 dla k = K.

(20)

In all the other cases (|m| > 0) the value of Er at symmetry axis AA′
is equal zero.

After some algebra manipulations of (17) and (18) we are
obtaining the following relation:

Hm = −jωε0(Gm)−1Pm
1 D1QbEm

b , (21)

where Gm takes the following form

Gm = Pm
1 Qε−1

r Pm
2 + ω2µ0ε0I(3W+1)×(3W+1), (22)
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which allow us to determine the magnetic field H for assumed boundary
electric field Eb. In order to determine the impedance matrix Zm we
assume the following excitation of the structure:

Em
b =

[
Em

b(Mt)
0

0 Em
b(Nt)

]
, (23)

where: [
Em

b(Mt)

]
k,n

= CE
nmMt

nm(θ(k), ϕ), (24)
[
Em

b(Nt)

]
k,n

= CH
nmNt

nm(θ(k), ϕ) (25)

for n = m, . . . , N , k = 1, . . . , K and CE
nm, CH

nm are the arbitrary
assumed coefficients. As a result of this excitation we are obtaining the
column vector of magnetic field components H defined in the interior
area of region I. Then utilizing Equation (18) we can also obtain the
column vector of electric field components E.
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Figure 3. Yee-grid defined in spherical coordinates in ϕ-const semi-
plane.
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Now the tangential components of electric and magnetic fields
defined at the surface S are expanded in the series which coefficients
can be found from the following relations:

FE
nm =

1
εnm

2π∫

0

π∫

0

fnm(R, θ, ϕ)Mt
nm(θ, ϕ) sin θdθdϕ, (26)

FH
nm =

1
εnm

2π∫

0

π∫

0

fnm(R, θ, ϕ)Nt
nm(θ, ϕ) sin θdθdϕ, (27)

where:
εnm = (−1)m 4πn(n + 1)

2n + 1
(28)

and FE
nm =

{
CE

nm, DE
nm

}
, FH

nm =
{
CH

nm, DH
nm

}
denotes the fields

expansion coefficients, fnm = {Et,Ht} are vector functions describing
the distribution of the field on the surface S in region I for assumed
value m and n ∈ {m, . . . , N}. In FDFD technique the electric and
magnetic fields are displaced for a half of the cell. Hence, in order to
find the tangential electric field components exactly at the same radius
as magnetic ones we calculate them as an arithmetic mean of two
neighbouring samples. Utilizing defined by (26) and (27) coefficients
the impedance matrix can be determined as follows:

Zm =

[
C

E(Eb(Mt)
)

m C
E(Eb(Nt)

)
m

C
H(Eb(Mt)

)
m C

H(Eb(Nt)
)

m

][
D

E(Eb(Mt)
)

m D
E(Eb(Nt)

)
m

D
H(Eb(Mt)

)
m D

H(Eb(Nt)
)

m

]−1

. (29)

In above relation matrices C
E(Eb(Mt)

)
m and C

H(Eb(Mt)
)

m contains the
electric and magnetic field expansion coefficients at the surface S for
the excitation Eb(Mt) defined by relation (24) and take the form:

C(·)
m =




C
(·)
mmm C

(·)
mm(m+1) · · · C

(·)
mmN

C
(·)
mNm C

(·)
m(m+1)(m+1)

. . . C
(·)
m(m+1)N

...
...

. . .
...

C
(·)
mNm C

(·)
mN(m+1) · · · C

(·)
mNN




. (30)

All the other matrices from Equation (29) are defined analogously.
Finally, determining Zm-matrix for all eigenvalues m =

−M, . . . , M we are obtaining the desired impedance matrix in the
following form:

Z =



Z−M 0 0

0
. . . 0

0 0 ZM


 . (31)
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It can be found that Z−m can be simply calculated based on the known
Zm defined for m > 0. Using the Maxwell Equations (15) and (16) and
the property of associated Legendre polynomials [20]:

P−m
n (cos θ) = (−1)m (n−m)!

(n + m)!
Pm

n (cos θ) (32)

we are obtaining the following relation:

Z−m = U−1
m ZmUm, (33)

where: Um = diag {−Umm, . . . ,−UmN , Umm, . . . , UmN} and Umn =
(n−m)!
(n+m)! .

2.2. Multiple Object Analysis

In the analysis of multiple object configurations the iterative scattering
procedure (ISP) formulated in spherical coordinates is used [17]. In
this procedure each scatterer is represented by T-matrix defined in
previous section. In the ISP we assume that the incident field on a
single post in P th iteration is derived from the scattered field from the
remaining posts in the previous iteration. At the end of the procedure
the total electric and magnetic fields on surface Sc are obtained.
Bearing in mind that the scattered field obtained during iteration
process depends on the unknown coefficients of zero order incident
field, the investigated configuration of posts can be described by total
transmission matrix Ttotal. In above procedure the fields between each
scatterers are translated using additional theorem of vector spherical
harmonics (VSH) [22]. In this relations the expansion coefficients are
determined using recurrence relations, which evaluation is numerically
inefficient and time consuming. In many cases the procedure can
be speed-up just by using the nested iterative scattering procedure
(NISP) [24]. In this approach, at first the effective objects are evaluated
for smaller groups of objects. Next, the total transmission matrix is
determined for the group of effective spheres defined in previous step.

2.3. Plane Wave Scattering

The proposed hybrid technique can be easily applied to the analysis
of scattering phenomenon from arbitrary configuration of axially-
symmetrical posts located in free space and illuminated with any
incident field. Lets consider in this section the plane wave illumination
of the investigated structure (see Fig. 4). In this case the total
tangential components of the electric and magnetic fields in the
outer region of surface S enclosing analyzed structure are defined by
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Figure 4. Plane wave in spherical coordinates.

Equations (2) and (3) where AE
1nm and AH

1nm are the coefficients of
incident field:

AE
1nm = ψnm {πnm(β) cos γ + jτnm(β) sin γ} , (34)

AH
1nm = ψnm {τnm(β) cos γ + jπnm(β) sin γ} , (35)

and

πnm(β) =
∂Pm

n (cos β)
∂β

, (36)

τnm(β) =
m

sinβ
Pm

n (cosβ), (37)

ψnm = E0(−j)n 2n + 1
n(n + 1)

e−jmα. (38)

As a result of this excitation the scattered field with the unknown
coefficients A2nm is obtained. The coefficients of scattered field can be
directly found from relation (6).

3. ACCURACY

The convergence of presented technique was verified for the single
dielectric cylinder illuminated with plane wave (see Fig. 5). In the
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analysis the following error criterion was assumed:

δF =
||F − FRE ||
||FRE || · 100%, where: || · || =

√√√√√
2π∫

0

π∫

0

| · |2dθdϕ, (39)

F is a characteristic of scattered field pattern for assumed parameters
of analysis and FRE is a scattered field pattern obtained from
Richardson extrapolation [25]. The results of convergence analysis are
collected in Table 1. It can be noticed that the error becomes lower
with the increasing mesh density W and the number of eigenfunctions
N . For number of eigenfunctions N = 6 and mesh cells W = 160×240
the accuracy of the method is higher than 0.1%. In this case the time
of scattered field pattern computation is about 128 s. However, when
we assume the accuracy higher than 0.6%, the satisfactory results are
obtained for W = 40 × 60 and N = 6. In this case, the time of
calculation is about 2 s.

Table 1. Percentage error δF of scattered field pattern calculation for
the structure from Fig. 5(a).

Mesh density (W = I ×K)
10× 15 20× 30 40× 60 80× 120 160× 240

N = 2 4.98 5.72 5.74 5.74 5.72
N = 4 2.74 1.23 0.59 0.24 0.11
N = 6 2.71 1.21 0.55 0.20 0.03
N = 8 2.71 1.23 0.58 0.24 0.05
N = 10 2.72 1.25 0.59 0.25 0.06

4. NUMERICAL RESULTS

In order to verify the validity and efficiency of the proposed approach
three structures presented in Figs. 6–8 were analyzed.

The first investigated structure presented in Fig. 6 is a
configuration of four dielectric cylinders illuminated with plane
wave. The normalized scattered electric field pattern is presented in
Figs. 6(b)–6(d). The results of proposed method well agree with the
ones obtained from commercial software QuickWave 3D (FDTD). The
computational time of hybrid FDFD-MM technique with N = 8 and
W = 20× 30 cells is 6.1 s (0.7 s for single object transmission matrix)
whereas the FDTD simulation with 546000 cells requires about 63 s
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Figure 5. Plane wave scattering on single dielectric cylinder (εr = 3,
r = 6 mm, h = 20 mm, f0 = 8GHz): (a) investigated structure, (b)
normalized scattered electric field pattern and its cross-sections in, (c)
x-z-plane and (d) y-z-plane.

(about eleven times longer). From the presented results it can be also
noticed that the usage of the investigated dielectric posts allows to
obtain the directional scattered field pattern with the low level of side
lobes. This property of dielectric objects can be applied in an antenna
beam focusing systems.

The next structure presented in Fig. 7 is an array of four dielectric
cylinders illuminated with plane wave. The scattered field patterns for
different angles (according to the direction of plane wave incidence)
of post configuration are presented in Figs. 7(a)–7(c). The results are
compared with the ones obtained from FDTD technique and a good
agreement is observed. In the case of hybrid approach with N = 8 and
W = 20 × 30 the time of calculations is about 11.2 s (0.7 s for single
object transmission matrix) whereas the FDTD simulation with 312228
cells needs 87 s (about eight times longer). From the presented results
it can be also noticed that the rotation of the posts has significant
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Figure 6. Plane wave scattering on configuration of four dielectric
cylinders: (a) investigated structure (r = 3mm, h = 10mm, d =
12mm, εr = 5, f0 = 14 GHz), (b) normalized scattered electric
field pattern and its cross-sections in (c) ϕ = {0, 180◦} and (d)
ϕ = {45◦, 225◦} planes.

influence on the shape of scattered field pattern. This can be used in
the beam forming structures.

The third structure is an array of sixteen metallic cylinders
presented in Fig. 8(a). As in the previous case the analyzed set
of objects is illuminated with plane wave. The normalized energy
characteristics of scattered field pattern for two different frequencies
of analysis are presented in Figs. 8(b) and 8(c). As in the previous
cases results well agree with FDTD calculations. The computational
time of the proposed method with N = 8 and W = 2400 is 34.2 s
whereas the FDTD simulation with 2395600 cells requires 334 s (ten
times longer). It can be also noticed that the periodically situated posts
allows to transmit or reflect almost all the power of the incident wave
for different frequencies. This effect can be used in periodic structures
to obtain the frequency selective surfaces which has a wide range of
applications in novel microwave systems.

The proposed hybrid technique is about ten times faster than
commercial software. Moreover, the time of analysis of single post
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Figure 7. Plane wave scattering on configuration of four dielectric
cylinders (εr = 5, r = 3 mm, h = 20mm, d = 30 mm, f0 = 10GHz) for
three different situations of posts according to plane wave incidence.

takes about only 10% of the whole time of analysis. The rest of
the time is used in ISP to determine the scattering parameters of
the investigated configuration. Most of the time in ISP is used
to determine (from recurrence relations [22]) the series coefficients
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describing the transformations of vector spherical harmonics between
local coordinates. These relations are much simpler in the case of
post rotation. It means that when the transmission matrix of each
single post and all the transformation of fields in ISP between local
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Figure 8. Plane wave scattering by an array of sixteen metallic
cylinders (r = 2mm, h = 18 mm, d = 16mm): (a) investigated
structure and normalized scattered power pattern and its cross-sections
for (b) f0 = 5GHz, and (c) f0 = 6 GHz.
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coordinates are determined once for desired frequency, the calculation
time of scattering parameters of the structure for any angles of posts
rotation is very short (about 0.1 s for all the investigated structures).
In result this method becomes very efficient when the parameters of
considered posts configuration for different rotation angles of elements
has to be found.

5. CONCLUSION

In this paper the new hybrid method based on the combination of
FDFD/MM technique and analytical ISP procedure is presented. The
proposed approach is applied to the analysis of electromagnetic wave
scattering from arbitrary configuration of objects. The convergence
and efficiency of the method are examined. The numerical results are
verified with commercial software and a good agreement is observed.
For all the presented examples the proposed technique was about
ten times faster in comparison to FDTD technique. Moreover, this
method becomes very efficient, when the parameters of the structure
for different angles of post rotation has to be found. This can be done
just by use of presented in the paper simple analytical relation.
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APPENDIX A.

In Equations (10) and (11) matrices ME
A1, MH

A1, ME
A2 and MH

A2 take
the following form:

ME
(·) = diag {Z0,Z1, . . . ,ZN ,dZ0,dZ1, . . . ,dZN} , (A1)

MH
(·) = diag {dZ0,dZ1, . . . ,dZN ,Z0,Z1, . . . ,ZN} , (A2)

where Zn = zn(k2R)I2n+1×2n+1, dZn = k
jωµz′n(k2R)I2n+1×2n+1,

z′n(αx) = 1
αx

∂αzn(αx)
∂x and I2n+1×2n+1 is a unit matrix of dimension

2n + 1 × 2n + 1. In the case of matrice ME,H
A1 function zn(·) = jn(·)

and in the case of matrice ME,H
A2 function zn(·) = h

(2)
n (·).
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